湖北省武汉市武昌区2021届高三1月质量检测数学_第1页
湖北省武汉市武昌区2021届高三1月质量检测数学_第2页
湖北省武汉市武昌区2021届高三1月质量检测数学_第3页
湖北省武汉市武昌区2021届高三1月质量检测数学_第4页
湖北省武汉市武昌区2021届高三1月质量检测数学_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、查找最新试卷,就来高考小站看看吧武昌区2021届高三年级1月质量检测注意事项:1 .答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2 .回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上。写 在本试卷上无效。3 .考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有 一项是符合题目要求的。1 .已知集合 A=xlx2-3x_4wO,B=x|2、8,那么集合 AAB=A.(3,+ oo) B.-L+ co) C3,4D.(3,

2、4J2-/2已知i是虚数单位,复数z =",则复数z在复平面内对应的点位于1 + iA.第一象限B .第二象限C.第三象限D .第四象限3.已知tana=2,则1 +cos 2asin 2a61D.-A.2 B. -C.-224甲、乙、丙、丁四位同学组成的数学学习小组进行了一次小组竞赛,共测试了 5道题, 每位同学各题得分情况如下表:学4V第1题第2题第3题第4题第5题甲101010200乙101051510丙1010151510T010102020下列说法正确的是A.甲的平均得分比丙的平均得分高B.乙的得分极差比丁的得分极差大C.对于这4位同学,因为第4题的平均得分比第2题的平均得

3、分高,所以第4题相关知识 一定比第2题相关知识掌握好D.对于这4位同学,第3题得分的方差比第5题得分的方差小5.物理学规定音量大小的单位是分贝(dB),对于一个强度为1的声波,其音量的大小7可由 如下公式计算:77 = 1。怆;(其中I.是人耳能听到声音的最低声波强度)。我们人类生活在一个充满声音的世界中,人们通过声音交换信息、交流情感,人正常谈话的音量介于40dB 与60dB之间,飞机起飞时的音量约为120dB,则120dB声音的声波强度Ii是40dB声音的 声波强度h的A.3 倍B.103 倍C.106倍 D.10 倍6已知 =2了3=4屋= 25。则A.b<c<a B.c&l

4、t;a<b C.a<h<c D.b<a<c7.学校举行羽毛球混合双打比赛,每队由一男一女两名运动员组成.某班级从3名男生 AA,A3和A4名女生Bi.B2,B3,B4中各随机选出两名,把选出的4人随机分成两队进行羽毛球混 合双打比赛,则A.和Bi两人组成一队参加比赛的概率为A. B. - C. - D.-189698.已知三棱锥P-ABC的各个顶点都在球O的表面上,PA_L底面ABC,AB±AC.AB=6.AC=8,D是线段AB上一点,且AD=2DB.过点D作球O的截面,若所得截而圆面积的最大值与 最小值之差为25工则球O的表面积为A. 1287rB.

5、1327r C. 1447r D. 1567r二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得。分。9.右图是函数y=cos(3X+(p)的部分图象,则cos(ax+(p)=A.sin(2x+ )6B.cos(-2x+ )3C.cos(2x+ )624 D.sin(2x+ )310.已知 a>0.b>0.且 a+b=l,则14八A. - + ->9a b21B.a2+b2Z; + - C. 2a +2h >D.log2a+Iog2b<-21L已知曲线C的方程为_+二=i(k e

6、 R),则9-k k -1A.当k=5时,曲线C是半径为2的圆B.当k=0时,曲线C为双曲线,其渐近线方程为y=±'x 3c.存在实数k,使得曲线C是离心率为人的双曲线D."k>r'是“曲线c为焦点在x轴上的椭圆''的必要不充分条件12.如图所示,在凸四边形ABCD中,对边BC.AD的延长线交于点E,对边AB.DC的延长线交于点F,若BC = ACE,ED = 际,AB = 3眇(4 > 0),则一 3一 1 一A. EB = -EF + -EA44c 的最大值为ID.会“3EB EA 9三、填空题:本题共4小题,每小题5分,共2

7、0分.13 .二项式(2x-七)6的展开式中,常数项为。(用数字作答)14 .已知过抛物线y2=-2x的焦点F,且斜率为、行的直线与抛物线交于A.B两点,则AF'BFL4BI二'15 .九章算术是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的几何原 本并称现代数学的两大源泉。九章算术卷五记载:“今有刍登(音:鹫m&g),下广三丈,表四丈,上袤二丈,无广,高一丈,问积几何?“译文: 今有如图所示的屋脊状楔体PQ-ABCD,下底面ABCD是矩形, 假设屋脊没有歪斜,即PQ中点R在底而ABCD上的投影为矩 形ABCD的中心点0()八8八8=4人口=3(=2.01<

8、;=1(长度单 位:丈).则楔体PQ-ABCD的体积为 (体积单位:立方丈)ex316 .设函数f(x)= T(x+2h】x+ )恰有两个极值点,则实数t的取值范围 A-X为.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17 .(10 分)AC在 2a-b=2ccosB/g)S=sin(A+B )= l+2sin2y 这三个条件中任选一个,补充在下面的横线处,然后解答问题。在AABC中,角A、B,C的对边分别为",b、c,设AABC的面积为S,已知.一(1)求角C的值;(2)若b=4,点D在边AB上,CD为LACB的平分线,ACDB的而积为把,求的值。

9、 3注:如果选择多个条件分别解答,按第一个解答计分。18 .(12 分)已知 3是等差列,a尸2的=6.(1)求an的通项公式:(2)设2 =1(四/1001,求数列bn)的前10项和Tio.19 .(12 分)在四棱锥P-ABCD中,侧面PAD,底面ABCD,底面ABCD为直角梯形,BC/AD.NADC=9()0.BC=CD=LaD=LPA=PD,E.F 分别为 AD.PC 的中点. 2(1)求证:PA/平面BEF;(2)若PC与AB所成角为45。,求二面角F-BE-A的余弦值.20 .(12 分)22设P是椭圆C:=十二= i(a>>0)=l(a>b>0)上异于长轴

10、顶点AlA?的任意一点,过P(C b-作C的切线与分别过A1,A?的切线交于BI.B2两点,已知IA|AJ=4,椭圆C的离心率为2(1)求椭圆C的方程:(2)以BiB?为直径的圆是否过x轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由。21 .(12 分)公元1651年,法国一位著名的统计学家德梅赫(De mere)向另一位著名的数学家帕斯卡 (B.Pascal)提请了一一个问题,帕斯卡和费马(Fermat)讨论了这个问题,后来惠更斯 (C.Huygens)也加入了讨论,这三位当时全欧洲乃至全世界最优秀的科学家都给出了正确 的解答。该问题如下:设两名赌徒约定谁先赢k(k&

11、gt;l,k£N*)局,谁便赢得全部赌注“元.每局甲赢的概率为 p(0<pvl),乙赢的概率为1-p,且每局赌博相互独立.在甲赢了 m(m<k)局,乙赢了 n(n<k) 局时,赌博意外终止。赌注该怎么分才合理?这三位数学家给出的答案是:如果出现无人 先赢k局则赌博意外终止的情况,甲、乙便按照赌博再继续进行下去各自赢得全部赌注的 概率之比P单:P乙分配赌注。(1)规定如果出现无人先赢k局则赌博意外终止的情况,甲、乙便按照赌博再继续进行下 去各2自赢得全部赌注的概率之比P ”,:P乙分配赌注.若=243.k=4,m=2,n=l,p=u则甲应分得多少赌注?查找最新试卷,就

12、来高考小站看看吧(2)记事件A为“赌博继续进行下去乙赢得全部赌注”,试求当k=4.m=2.n=l时赌博继续进3行下去甲赢得全部赌注的概率f(p),并判断当起丁时,事件A是否为小概率事件,并说明 4理由。规定:若随机事件发生的概率小于0. 05,则称该随机事件为小概率事件.22 .(12 分)己知函数 f(x)=xlnx- - x2+(a-l)x(aeR).2(1)讨论函数f(x)的极值点的个数:(2)若函数f(x)有两个极值点xix,证明:f(X|)+f(X2)>2a-3.武昌区2021届高三年级1月质量检测数学参考答案及评分细则四、解答题:17. (10 分)解:(1)若选:2ccos

13、B = 2b。,则由正弦定理得2sin CeosB = 2sin(5 + C)-sin B ,即 2sin 4cosc sin 4 = 0 , ,.,sinBwO,,cosC = ;.则。=(.(4 分)若选:4s = y/5(b? +a2 -f2),则4'/?。sinC = y/3 - 2bacosC,化简得tanC =,。=三.(4 分)若选:Gsin(A +3) = 2sin不 +1,则仃"sinCu 1cosC + 1 .化简得2sinfc + N' = 2,所以c + N =色,故C = Z (4分)6;6 23(2)在AA8C中,5».=5M8+

14、5乂向所以,-CB-CD sm30o + -CA CD sin30° = -C>l CB sin60o 222=L/ x CD + CD = 3a.又 S、8B=kxCD = *.a24由, = =。= 2或一一(舍).a + 4 33/. a = 2. (10 分)18. (12 分)u = 2ci - 2解:(1)设等差数列”“的公差为4,由条件得 一,解得< |一% =4+2d = 6 d = 2故为=2(4分)由可知包=12一1001=110°一2,1。46 ,其中 £%*2n-100,7 <n< 10故4的前 10项和 7;u =

15、(100 21) + (100 2b+(!00 26) +Q7 100)+Q1° 100)21 (126) 27 G24)= 200-(2,+22+.-+26) +(27 + 28 + -. +21<>) =200-+ -=1994. (12)1-21-219. (12 分)解:(1)证明:连接乂。交8E于。,并连接EC, FO, ;BC/AD,BC = LaD, E 为 AD 中点,AEBC,且 HE=8C. 2二四边形43CE为平行四边形,二。为,4C中点,又F 为 AD 中点、,:.OF/PA, / OF c=平面8七£ PA <z平面3石尸, .R

16、4平而BE尸.(4分)(2)方法一:(综合法)由BCDE为正方形可得EC =垃BC = -J1.由ABCE为平行四边形可得EC/AB.ZPCE 为 PC与A3所成角,即 NPCE = 45°. / PA = PD 石为点:.PE±AD. 侧而 PAD,底而 A8C。,侧面 R4Oc 底面 ABCD = AD. PE u 平面 PAD,(8分)c.PE J_ 平面A3CD, /. PEA. EC. :.PE = EC = yl取尸。中点M,连加£肠4.8石,平而PA。,为尸一8E-A的平而角. 面R4。_L 面A88,且面PAOc 面A8CQ = AD, BE

17、77;ADj /又.EM =正,AE = LAM =业,.cosNME4 =走所以二面角万一的余弦值为一立. (8分)3方法二:(空间向量法)建议给分标准:建系正确,设(求)点的坐标正确,2分;利用线而角求出线段长正确,2分;求法向量正确,2分;求余弦并给出结论正确,2分20. (12 分)2=4解:(1)由题可知 C 1,解得 = 2,C = 1,由/=2+。2得=3,e = - = -a 2X2 y2椭圆。的方程为一+ = 1.(4分)43(2)设。(%,先),由于尸是异于长轴顶点儿,&的任意一点,故切线斜率存在.设过户的椭圆的切线为),=辰+ ,联立方程y = kx + b143

18、13结合,y0=kx0+b片+片143得(3 + 4A 2 )x2 + 8kbx + 4/ -12 = 0 , A = (8 幼尸 一 4(3 + 4k 2 )(4b2-12) = 0,3 r工 3解得过P点的切线方程为y = -二工+ 一.4yo %由于分别过A,4的切线分别为x = -2,x = 2 ,解得用,用的坐标为B1(一2,包口包),B, (2,合口包).2yo - 2yo6+a , 6一? 丫在入轴上取点M。,0),贝IJM以=(一2 /,?) , M£ = (-2 + f,上也), 2汽-2yo.46 - 0 丫一所以2=14.%当/ = ±1时,河5河从=

19、0所以,以以一为直径的圆过x轴上的定点为耳(- 1,0),卜(1,0). (12 分)21. (12 分)解:(1)设赌博再继续进行X局甲赢得全部赌注,则最后一局必然甲赢.由题意知,最多再进行4局,甲乙必然有人赢得全部赌注.当X=2时,甲以4:1赢,所以p(X=2)=弓尸=9;当X=3时,甲以4:2赢,当X=4时,甲以4 : 3赢,E548所以 P(X=3)=G 2x4-2):-333 27所以 p(X =4)=C"(-)la-l)2x- = A.v 73 333 274 24 8_+ =.' 9 27 27 27 9Q 所以,甲应分得的赌注为243x5 = 216元. (6

20、分)(2)设赌博继续进行X局乙嬴得全部赌注,则最后一局必然乙赢. 当X=3时,乙以以4: 2赢,p(X=3)= (l-源:当 X=4 时,乙以以4: 3 赢,p(X = 3)= Cpiy - P)3 = 3p(l - pf :所以,乙赢得全部赌注的概率为P(A) = (l - Py + 3(l y = Q + 3)(1一尸.于是甲赢得全部赌注的概率/(p) = l-(l + 3p) (1-"尸求导,/'()=一3。一 )' 一 (1 + 3)-3(1 )2( D = 12(1 一下.a3因为上所以(p)>0,所以/(P)在 £二/)上单调递增, 44于

21、是八L»g|.故乙赢的概率为1-空力0.0508>0.05,故事件4不是小概率事件.(12分) 256 25622. (12 分)解:(1) r(x) = lnxT + a, /7%) = 1-1 =.XX当xe(OJ)时,r'(x)>0, /'(x)单调递增;当X(1N)时,r(x)<0, /'(X)单调递减.当工=1时,.广(外有极大值,/="1.当“金时,尸(1”0,在(0,y)上单调递减,此时/(X)无极值:当时,,f(l) = «-l>0.z,(7)卜叫出)+“=-“-1-(? +"<0,易

22、证,x>l 时,ex > 2x ,所以,n > 1, f'(ea = 2uea <0,(1 Y+1故存在内,工2,1两足。< 一V玉 < 1 <X? <e" ,/r() = fx2) = 0.当xe(0,xJ时,单调递减,当工式内,马)时,/(x)单调递增,当xe(,q,+8)时,/(X)单调递减./(X)在x =大处有极小值,在a = X,处有极大值.综上所述,当时,/(X)没有极值点;当0>1时,f(x)有2个极值点.(6分)(2)由 可知当且仅当时有极小值为和极大值0<x,<l<x2.先证:Xj 4

23、- x2 > 2 .由 In% a+4 0,得hiXX =ln.2X,,即 = 1.In x2 - a, + </ = 0'- lnA - lav,_2( J)下证”N (土工,即证in±>一(以下略)lnx2 - ln.v, 2% 七 十】所以1= 工一、土,所以为+居>2.In x2 -lnx) 2因为0<%<1<,$+%>2,所以修>2 - x>X.因为工£(%,/)时,/(X)单调递增,所以/(%)>/(2 - N),所以/区)+ /伍)>/区)+ 2-王).再证:/(A) + /(x2)>2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论