版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、有理数四则运算1、有理数的加法(1)符号相同的两数相加,和的符号与两个加数的符号一致,和的绝对值等于两个加数 绝对值之和:+14+12=+114+12| =+26-15-14=-115+14| =-29(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的 符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;35+ (-25) =+|35-25|=+1032+ (-60) =-| 60-321 =-28(3)互为相反的两个数相加得0:-26+ (+26) =0(4) 一个数同0相加,仍得这个数。-26+0=2635+0=35注意:一个有理数由符号和绝对值两部分组
2、成,所以进行加法运算时,必须分别确定和的符号 和绝对值。2、有理数的减法减去一个数,等于加上这个数的相反数。例如:(-25)-(-17)= -25+17=-|25-17|=-814- (+35) =14+ (-35) =-|35-14|=-21(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减 17”,也可以读作“正14、正12、负25、负17的和。”在把有理数加减混合运算统一为最简的形式,负数前而的加号可以省略不写。3、有理数的乘法(1)两数相乘,同号得正,异号得负。任何数同0相乘,都得0: (+2 ) X (+3) =+6(-2) X (
3、-3 ) =+6 (同号相乘得正)(-2 ) X ( + 3 ) =-6(+ 2 ) X (- 3) =-6 (异号相乘得负)0X3=0:0X( 3)=0: 2X0=0: (-2)X0=0.(任何数乘。都得 0)(2)互为倒数的两个数乘积是1,符号相反的两个互为倒数的乘积是-1;-X-=1(-) X (-) =16565(3)几个不是0的数相乘,负因数的个数是偶数时,积是正数:负因数的个数是奇数 时,积是负数:(+2) X (-3) X (-5) = + 30(负因数的个数是偶数积为正)(+2) X (+3) X (-5) =-30(负因数的个数是奇数积为负)(4)两个数相乘,交换因数的位置,
4、积相等。即 ab=b”(-2 ) X (+3) = (+3) X (- 2 )(5)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。( b) c=a (be)(- 2 5) X (+ 3 ) X (-4) = (- 25) X (-4) X (+ 3 )(6) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a (b4-c) = a b+ a c(- 2 5) X (4+8) = (- 25) X4+ (- 2 5) X (+8)4、有理数的除法(1)两数相除,同号得正,异号得负,并把绝对值相除。72+9=8(-72) v (-9) =8 (同号相除得正)(2)
5、 0除以任何一个不等于0的数,都得0。0+9=00。 (-9) =0(3)除以一个不等于0的数,等于乘这个数的倒数。15+2=15x9=1815+(-)=l5X(-)=-186 565(4)因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除 混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。7 38483原式二35X - X (.二)(变除为乘)3 =-40 X (-)(约分)例:35+X()5、有理数的乘方基本概念:n个相同的因数。相乘,即4 4小.我们把它记作n,表示n个a相乘。这种求相同因数的积的运算,叫做乘方,乘方的结果叫做事。在4 n中,“叫做底数,n
6、叫做指数,读作。的n次事。塞的运算:(1)正数的任何次基都是正数:例:23=8 32=9(2)负数的奇数次基是负数,负数的偶数次事是正数:例:(-2) 3=8(-2) 2=4(3)。的任何正整数次箱都是0;例:02=0(4)任何不等于0数的0次基都是1:例:2°=1(-2) °=1(5)任何不等于零的数的一p次暮,等于这个数的p次箱的倒数.例:(3)心32注:在同底数幕的除法、零指数幕、负指数事中底数均不为0.6、正整数指数塞公式n°=1(。工0)。(>0)a m+an=(严皿 (m和n是正整数)(a m) n= amn (m和n是正整数)(ab)n= an
7、bn (n 是正整数)a mva n= "("'。加和 n 是正整数,m>n)(-)n= (公式乘方公式,n是正整数) b bna(aM, n是正整数)7、有理数的开方求一个非负数的平方根的运算叫做开平方。(1)平方根如果一个数X的平方等于。,那么,这个数X就叫做4的平方根。4是被开方数。 也即,x2=n (。20)时,我们称x是。的平方根,记做:x=±V(«>0o )平方根的性质:A 一个正数有正、负两个平方根,它们互为相反数:B零有一个平方根,它是零本身;C负数没有平方根。开平方:求一个非负数的平方根的运算叫做开平方。+3与-3的
8、平方是9, 9的平方根是+3和-3。可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一 个数的平方根°平方根的表示方法根号根指数、I-被开方数一个正数的正的平方根,用符号“指”表示,。叫做被开方数,2叫做根指数。正数的负的平方根用符号“-指”表示,4的平方根合起来记作“ 土勺"”,其 中读作“二次根号”,“纸”读作“二次根号下"”。当根指数为2时,通常将这个2省略不写,所以正数”的平方根也可记作“ 土 质 ”, 读作“正、负根号”因此:当 =0时,它的平方根只有一个,也就是0本身:当4>0时,也就是为正数时,它有两个平方根,且它们是
9、互为相反数。通常记做:x = ±& °当4<0时,也即,为负数时,它不存在平方根。(2)算术平方根如果一个正数X的平方等于,即x2=a ,那么,这个正数X就叫做4的算术平方根, 记为:“ 质 ”,读作,“根号4"。其中,“称为被开方数。特别规定:0的算术平方根仍然为0。算术平方根的性质:具有双重非负性,即:、石之0(420)。算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数 共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:、石:而平方根具有两个互为相反数的值,表示为:(3)立方根如果一个数的立方等于4,
10、那么这个数叫做4的立方根,叫做被开立方数。立方根的性质:A:正数有一个正立方根;例:我=2 师=3V64 =4B:负数有一个负立方根例:V8 =-2 V 27 =-3 V- 64 =-4C:零的立方根是零立方根的表示:根号根指数啊一 被开方数.w数的立方根我们用符号 知 来表示,读作”三次根号/,其中。叫做被开方数,3 叫做根指数,3且不能省略。开立方:求一个数的立方根的运算,叫做开立方。开立方运算与立方运算是互逆运算°如:32=27(-3) 2=27则口7 =-3重点:正数的立方根是正数,负数的立方根是负数。8、有理数混合运算的运算顺序(D从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键例 1:计算:3 + 5022乂(1)- 13原式=3 + 50;4X 1-1 (先乘方运算)9=3 + 5OX lxl-1 (变除为乘) 497=3 + 1 -1 (再算乘法)187=3 18(最后算加减)(2)从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号 里的.例2:计算:巧一 -4+(1-0.2X)(-2)原式=-5 -4+(1-; ):(-2)(先算小括号中的乘法) 2 524=5 14+(-2)(再算小括号中的减法) 2 5=-5-4+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 取用水领域信用评价指标及评分标准
- 《水文分析与计算》本科题集
- 班子领导在新单位见面会上的讲话
- 石淋与现代艺术融合
- 江苏省苏州市姑苏区2024-2025学年九年级上学期10月月考历史卷(含答案)
- 2024年电银项目资金需求报告代可行性研究报告
- 2023年带钢传输自动纠偏装置资金申请报告
- 2023年自动络筒机投资申请报告
- 2024年实验室仪器装置项目资金筹措计划书代可行性研究报告
- 强化现场6S管理-推进班组建设
- isae3402如何做--dmla访问控制
- 《人物的千姿百态》初中美术教学课件
- 渗透现象-课件完整版
- 水利工程单位工程外观质量评定标准报备
- 对外汉语教学趋向补语练习题
- 空白教案模板(表格形式-已排版)
- 高锰酸钾安全使用说明书
- 建筑废弃材料回收利用公司创业项目计划书
- 糖尿病个案相关护理课件
- 五年级上册心理健康教育课件-情绪卡片 全国通用(共13张PPT)
- 新部编人教版高中历史必修下册 第12课 资本主义世界殖民体系的形成 教案(教学设计)
评论
0/150
提交评论