2019年高考数学(文科)二轮复习专题6 第2讲 概率及其与统计的交汇问题_第1页
2019年高考数学(文科)二轮复习专题6 第2讲 概率及其与统计的交汇问题_第2页
2019年高考数学(文科)二轮复习专题6 第2讲 概率及其与统计的交汇问题_第3页
2019年高考数学(文科)二轮复习专题6 第2讲 概率及其与统计的交汇问题_第4页
2019年高考数学(文科)二轮复习专题6 第2讲 概率及其与统计的交汇问题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第 2 讲概率及其与统计的交汇问题高考定位1.以选择题、填空题的形式考查古典概型、几何概型的基本应用,同时渗透互斥事件、对立事件;2.概率常与统计知识结合在一起命题,主要以解答题形式呈现,中档难度.真 题 感 悟1.(2016·全国卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40 秒.若一名行人来到该路口遇到红灯,则至少需要等待 15 秒才出现绿灯的概率为()A.  710B.58D.  3C.381040   840

2、155解析至少需要等待 15 秒才出现绿灯的概率为 .答案B2.(2016·全国卷)为美化环境,从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中,余下的2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.13B.12C.23D.5663解析从 4 种颜色的花中任选 2 种颜色的花种在一个花坛中,余下 2 种颜色的花种在另一个花坛的种数有:红黄白紫、红白黄紫、红紫白黄、黄白红紫、黄紫红白、白紫红黄,共6 种

3、,其中红色和紫色的花不在同一花坛的种数有:红黄白紫、红白黄紫、黄紫红白、白紫红黄,共 4 种.故所求概42率为 P  .答案C3.(2017·全国卷)从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.25解析如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数11(1,1)2(1,2)3(1,3)4(1,4)5

4、(1,5)2345(2,1)(3,1)(4,1)(5,1)(2,2)(3,2)(4,2)(5,2)(2,3)(3,3)(4,3)(5,3)(2,4)(3,4)(4,4)(5,4)(2,5)(3,5)(4,5)(5,5)255总计有 25 种情况,满足条件的有 10 种,102所以所求概率为 .答案D4.(2017·全国卷)如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.8C.12D.4

5、解析设正方形的边长为 2,则面积 S 正方形4.又正方形内切圆的面积 S ×12 .所以根据对称性,黑色部分的面积 S 黑 2 .S黑S正方形由几何概型的概率公式,概率 P8.n     基本事件总数(1)P(A)                  

6、                         .答案B考 点 整 合1.古典概型的概率mA中所含的基本事件数(1)公式 P(A) .(2)古典概型的两个特点:所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等.2.几何概型的概率构成事件A的区域长度(面积或体积)试验的全部结果所构成的

7、区域长度(面积或体积)(2)几何概型应满足两个条件:试验中所有可能出现的结果 (基本事件)有无限多个;每个基本事件出现的可能性相等.3.概率的性质及互斥事件的概率(1)概率的取值范围:0P(A)1.(2)必然事件的概率:P(A)1.(3)不可能事件的概率:P(A)0.(4)若 A,B 互斥,则 P(AB)P(A)P(B),特别地 P(A)P( A )1.热点一几何概型【例 1】(1)(2016·全国卷)某公司的班车在 7:30,8:00,8:30 发车,小明在 7:50

8、60;至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.13B.12C.23D.342(2)(2017·日照质检)如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(1,0),且点 C 与点 D 在函数 f(x)x1,x0,1的图象上.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率等于() x1,x0A.16B.

9、14C.38D.12解析(1)如图所示,画出时间轴:40   22小明到达的时间会随机的落在图中线段 AB 上,而当他的到达时间落在线段 AC 或 DB 上时,才能保证他等10101车的时间不超过 10 分钟,根据几何概型得所求概率 P .1(2)因为四边形 ABCD 为矩形,B(1,0)且点 C 和点 D 分别在直线 yx1 和 y x1 上,所以

10、0;C(1,2),D(2,2),E(0,1),则 A(2,0).13因此 S 矩形 ABCD6,S 阴影2×1·|CD|2.64321由几何概型,所求事件的概率 P  .答案(1)B(2)B探究提高1.几何概型适用条件:当构成试验的结果的区域为长度、面积、体积时,应考虑使用几何概型求解.2.求解关键:寻找构成试验的全部结果的区域和事件发生的区域,有时需要设出变量,在坐标系中表示所需要的区域.易错警示在计算几何概型时,对应的是区间、区域还是几何体,一定要区分开来,否则结论不正确.ì

11、39;ex,0x<1,【训练 1】 (1)(2017·榆林二模)若函数 f(x)í在区间0,e上随机取一个实数 x,则ïîln xe,1xef(x)的值不小于常数 e 的概率是()eA.1e1B.1C.    eD.    11e1e(2)(2016·全国卷)从区间0,1随机抽取 2n 个数 x1,x2,xn,y1,y2,yn,构成 n 个数

12、对(x1,y1),(x2,y2),(xn,yn),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率  的近似值为()A.4nmB.2nmC.4mnD.2mne      e解析(1)当 0x<1 时,恒有 f(x)ex<e,不满足题意.当 1xe 时,f(x)ln xe.由 ln xee,得 1xe.e11所求事件的概率 P1 

13、.(2)如图,m  4        4m数对(xi,yi)(i1,2,n)表示的点落在边长为 1 的正方形 OABC 内(包括边界),两数的平方和小于 11的数对表示的点落在半径为 1 的四分之一圆(阴影部分)内.由几何概型的概率公式可得n 12 ,故   n .答案(1)B(2)C热点二古典概型的概率【例 2】 (2016·山东卷)某

14、儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为 x,y.奖励规则如下:所以 P(A),即小亮获得玩具的概率为.所以 P(B)  .16     816若 xy3,则奖励玩具一个;若 xy8 则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大

15、小,并说明理由.解(1)用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间  与点集 S(x,y)|xN,yN,1x4,1y4一一对应.因为 S 中元素的个数是 4×416.所以基本事件总数 n16.(1)记“xy3”为事件 A,则事件 A 包含的基本事件数共 5 个,即(1,1),(1,2),(1,3),(2,1),(3,1),551616(2)记“xy8”为事件 B,“3xy8”为事件 C.则事件 B 包含的基本

16、事件数共 6 个.即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).63168事件 C 包含的基本事件数共 5 个,即(1,4),(2,2),(2,3),(3,2),(4,1).535所以 P(C).因为 ,所以小亮获得水杯的概率大于获得饮料的概率.探究提高1.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数.2.两点注意:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏.(2)当直接求解有困难时,可考虑求其对立事件的概率.【训练 2】&#

17、160;(2017·昆明诊断)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取 40 名学生的测试成绩,整理数据并按分数段40,50),50,60),60,70),70,80),80,90),90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).4010(1)体育成绩大于或等于 70 分的学生常被称为“体育良好”.已知该校高一年级有 1 000 名学生,试估计该校高一年级中“体育良好”的学生人数;(2)为分析学生平时的体育活动情况,现从体育成绩在60,70

18、)和80,90)的样本学生中随机抽取 2 人,求在抽取的 2 名学生中,至少有 1 人体育成绩在 60,70)的概率.解(1)由折线图,知样本中体育成绩大于或等于 70 分的学生有 1431330(人).30所以该校高一年级中,“体育良好”的学生人数大约有 1 000×750(人).(2)设“至少有 1 人体育成绩在60,70)”为事件 M,记体育成绩在60,70)的数据为 A1,A2,体育成绩在80,90)的数据为 

19、;B1,B2,B3,则从这两组数据中随机抽取 2 个,所有可能的结果有 10 种,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).而事件 M 的结果有 7 种,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3).7因此事件 M 的概率 P(M).热点三概率与统计的综合问题【例 3】(2017·

20、合肥质检)一企业从某条生产线上随机抽取 100 件产品,测量这些产品的某项技术指标值 x,得到如下的频率分布表:x频数11,13)213,15)1215,17)3417,19)3819,21)1021,23)4(1)作出样本的频率分布直方图,并估计该技术指标值 x 的平均数和众数;(2)若 x<13 或 x21,则该产品不合格.现从不合格的产品中随机抽取 2 件,求抽取的 2 件产品中技术指标值小于 13 的产品恰有 1 件的概率

21、.解(1)频率分布直方图为15估计平均数为 x 12×0.0214×0.1216×0.3418×0.3820×0.1022×0.0417.08.由频率分布直方图,x17,19)时,矩形面积最大,因此估计众数为 18.(2)记技术指标值 x<13 的 2 件不合格产品为 a1,a2,技术指标值 x21 的 4 件不合格产品为 b1,b2,b3,b4,则从这 6 件不合格产品中随机抽取

22、 2 件包含如下基本事件(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15 个基本事件.记抽取的 2 件产品中技术指标值小于 13 的产品恰有 1 件为事件 M,则事件 M 包含如下基本事件(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2)

23、,(a2,b3),(a2,b4),共 8 个基本事件.8故抽取 2 件产品中技术指标值小于 13 的产品恰有 1 件的概率为 P.探究提高1.概率与统计的综合题一般是先给出样本数据或样本数据的分布等,在解题中首先要处理好数据,如数据的个数、数据的分布规律等,即把数据分析清楚,然后再根据题目要求进行相关计算.2.在求解该类问题要注意两点:(1)明确频率与概率的关系,频率可近似替代概率.(2)此类问题中的概率模型多是古典概型,在求解时,要明确基本事件的构成.【训练 3】 (2017

24、3;成都诊断)某省 2017 年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85 分及以上,记为 A 等;分数在70,85)内,记为 B 等;分数在60,70)内,记为 C 等;60 分以下,记为 D 等.同时认定 A,B,C 等为合格,D 等为不合格.已知甲、乙两所学校学生的原始成绩均分布在50,100内,为了比较两校学生的成绩,分别抽取 50 名学生的原始成绩作为样本进行统计.按照50,

25、60),60,70),70,80),80,90),90,100的分组作出甲校样本的频率分布直方图如图 1 所示,乙校的样本中等级为 C,D 的所有数据的茎叶图如图 2 所示.æ2 ö乙学校的合格率为ç1   ÷×100%0.96×100%96%.抽取的 2 名学生中至少有 1 名学生成绩等级为 D 的概率为 P  .2  

26、60;            3(1)求图中 x 的值,并根据样本数据比较甲、乙两校的合格率;(2)在乙校的样本中,从成绩等级为 C,D 的学生中随机抽取 2 名学生进行调研,求抽出的 2 名学生中至少有 1 名学生成绩等级为 D 的概率.解(1)由题意,可知 10x0.012×100.056×100.018×100.

27、010×101,x0.004,甲学校的合格率为(110×0.004)×100%0.96×100%96%.è50ø甲、乙两校的合格率均为 96%.(2)由题意,将乙校的样本中成绩等级为 C 的 4 名学生记为 C1,C2,C3,C4,成绩等级为 D 的 2 名学生记为D1,D2,则随机抽取 2 名学生的基本事件有C1,C2,C1,C3,C1,C4,C1,D1,C1,D2,C2,C3,C2,C4,C2,D1,C2,D2,

28、C3,C4,C3,D1,C3,D2,C4,D1,C4,D2,D1,D2,共 15 个基本事件.其中“至少有 1 名学生成绩等级为 D”包含C1,D1,C1,D2,C2,D1,C2,D2,C3,D1,C3,D2,C4,D1,C4,D2,D1,D2,共 9 个基本事件.931551.几何概型的概率计算主要考查与构成事件区域的长度、面积、体积有关的实际问题 .考查难度不大,与平面区域、空间几何体、函数等结合是命题的一个方向.2.古典概型中基本事件数的探求方法(1)列举法:将基本事件按一定的顺序一一列举出来,适用于求解基本

29、事件个数比较少的概率问题.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.3.当某事件的概率不易直接求解,但其对立事件的概率易求解时,可运用对立事件的概率公式 (若事件 A与事件 B 为对立事件,则 P(A)P(B)1),即用间接法求概率.一、选择题111.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是 ,甲获胜的概率是 ,则甲不输的概率为()A.56B.25C.16D.13解析设“两人下成和棋”为事件 A,“甲获胜”为事件&#

30、160;B.事件 A 与 B 是互斥事件,所以甲不输的概率 PP(AB)P(A)P(B)      .115236答案A2.(2016·全国卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N 中的一个字母,第二位是 1,2,3,4,5 中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815B.18D.  1C.1153015解析小敏输入密码的所有可能情况如下:(M,1),(M,2),(M,3),

31、(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共 15 种.1而能开机的密码只有一种,所以小敏输入一次密码能够成功开机的概率为 .答案C3.(2017·莆田质检)从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长度不大于 1 的概率是()8              &#

32、160;                     B.A. 4C.12D.344       1×1   4解析任取的两个数记为 x,y,所在区域是正方形 OABC 内部,而符合题意的 x,y 位于阴影区域内(不包括&#

33、160;x,y 轴).1 ×12故所求概率 P.答案B.4.(2017·天津卷)有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫 从这 5 支彩笔中任取 2支不同颜色的彩笔,则取出的 2 支彩笔中含有红色彩笔的概率为()A.45B.35C.25D.15解析从 5 支彩笔中任取 2 支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、所以所求概率 P  .蓝紫、绿紫,

34、共 10 种,其中取出的 2 支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4 种.42105答案C5.有一底面半径为 1、高为 2 的圆柱,点 O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点 P到点 O 的距离大于 1 的概率为()A.13B.23C.34D.143解析设点 P 到点 O 的距离小于等于 1 的概率为 P1,由几何概型,则 P1&

35、#160;         .335(4)  92×13V半球1V圆柱×12×2312故点 P 到点 O 的距离大于 1 的概率 P1  .答案B二、填空题6.(2017·江苏卷)记函数 f(x) 6xx2的定义域为 D.在区间4,5上随机取一个数 x,则 xD 的概率是_.解析由 6xx

36、20,得2x3,即 D2,3.3(2)5所求事件的概率 P .答案592a47.(2017·黄山二模改编)从集合 A2,4中随机抽取一个数记为 a,从集合 B1,3中随机抽取一个数1记为 b,则 f(x) ax2bx1 在(,1上是减函数的概率为_.解析依题意,数对(a,b)所有取值为(2,1),(2,3),(4,1),(4,3)共 4 种情况.记“f(x)在区间(,1上是减函数”为事件 A.b则 A 发生时,x 1,即

37、60;ab事件 A 发生时,有(2,1),(4,1),(4,3)共 3 种情况.3故所求事件的概率 P(A) .答案348.(2016·山东卷)在区间1,1上随机地取一个数 k,则事件“直线 ykx 与圆(x5)2y29 相交”发生的概率为_.解析直线 ykx 与圆(x5)2y29 相交的充要条件是圆心(5,0)到直线 ykx 的距离小于 3.3   æ3ö4 

38、60; è4ø4    4                     1(1)  4则ç ÷|5k0|            3  

39、  3                                 33,解之得 k ,故所求事件的概率 P         

40、 .k212答案34则所求事件的概率为 P  .三、解答题9.(2017·山东卷)某旅游爱好者计划从 3 个亚洲国家 A1,A2,A3 和 3 个欧洲国家 B1,B2,B3 中选择 2 个国家去旅游.(1)若从这 6 个国家中任选 2 个 ,求这 2 个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选 1 个,求这 2 个国家

41、包括 A1 但不包括 B1 的概率.解(1)由题意知,从 6 个国家中任选两个国家,其一切可能的结果组成的基本事件有:A1,A2,A1,A3,A1,B1,A1,B2,A1,B3,A2,A3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,B1,B2,B1,B3,B2,B3,共 15 个.所选两个国家都是亚洲国家的事件所包含的基本事件有A1,A2,A1,A3,A2,A3,共 3 个.31155(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:A1,B

42、1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,共 9 个.包括 A1 但不包括 B1 的事件所包含的基本事件有2A1,B2,A1,B3,共 2 个,则所求事件的概率为 P9.10.(2016·全国卷)某险种的基本保费为 a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费00.85a1a21.25a31.5a41.75a52a随机调查了该险种的 200

43、0;名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510解  (1)事件 A 发生当且仅当一年内出险次数小于 2,由所给数据知,一年内出险次数小于 2 的频率为(1)记 A 为事件:“一续保人本年度的保费不高于基本保费”.求 P(A)的估计值;(2)记 B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求 P(B)的估计值;(3)求续保人本年度的平均保费的估计值.60502002000.55,故 P(A)的估计值为 0.55.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论