




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Classify Group Theory Gxyz Ä Gatoms = G3N ¬ count atoms NOT momentumvibrations G3N-6 = G3N - Gtrans - Grot as character: c3N = cxyz · catom then reduce to get linear combination invedCan categorize subspacesstretchescstr = å bonds that do not ?bends, etcetc.again reduce idea thes
2、e pretty different energiesbut these may or may not span the spacemust pick carefully include all motionGroup Theory provides test do you get all representationAlternate may use Projection OperatorpG(r) = åci ri will give linear combination of equivalent “r, could be bends, ?Example 2:go on toC
3、H4TdTdE8C33C26S46sdA111111A2111-1-1E2-1200T130-11-1RxRyRzT230-1-11x y zAgain c3N = cxyz · catoms cxyz30-1-11catom52113c3N150-1-13-(ctrans + crot)60-200c3N-6901-13Reduce c3N-69A1 = 1 9 1 + 8 0 1 + 3 1 1 + 6 1 (1) + 6 3 1 = = 19A2 = 1 9 1 + 3 1 1 + 6 -1 -1 + 6 3 -1 = 09E = 2 9 1 + 3 2 1 = = 19T1
4、= 3 9 + 3 -1 1 + 6 1 -1 + 6 -1 3 = 09T2 = 3 9 + 3 -1 1 + 6 -1 -1 + 6 1 3 = = 2thus G3N-6 = A1 + E + 2T2see how 1 + 2 + 2 3 = coordinatesless obvious:NH3:cN-H = 3 0 1reduce: A1 + EcHNH = 3 0 1(Note reflection in place bisectreduce: A1 + Eangle gives +1)recallc3N-6 = 2A1 + 2E2 - 1D + 2 - 2DÞ 6 di
5、mensional3N - 6 = 12 - 6 = 6so these 3NH + 3HNH span the spacebit harderCH4 see attached Handoutc3N-6 = A1 + E + 2T21D + 2D + 2 3DÞ 9 dimensional3N - 6 = 15 - 6 = 9Now could choose C-H str 4H-C-H bend 6 10 problemsince more internal coordinate then 3N-6 these cannot be all independentcC-H = 4 1
6、 0 0 2implies 2A1 + E + 2T2reduces to A1 + T2get one too many A1 coordinatesone is not independent or in thiscHCH = 6 0 2 0 2cHCH = a12 + a13 + a21 + a23 + a24 + a34 = 0reduces to A1 + E + T2cant all open at onceNow that we have a way of getting at a system of coordinates we must look at how to use
7、themVibrations of polyatomics solve 3N-dimensional (R) TN + Ukk (R) cu (R) = Eu cu (R)now only interested in relative motioncan remove C of M + rotation degree freedomget 3N-6 independent coordinate but express as function of Rs stillNormally express as Cartesian displacementcoordinate ® deriva
8、tion from equilibrium in rotating framed1 = Dx1, d2 = Dy1 d3N = D = zNfor vibration problem mass weighted Cartesian displacement coordinate easierq1 = m1½ Dx1, q2 = m1½ Dy2 q3n = mN½ DzNClassically:Potential normally done in Harmonic Approximation (same as diatomic, more coordinates)N
9、ow same as for diatomic: Ue constant / just shift potential E for minimum1st non-zero / non-constant term is quadratic (qi qj)but of course there are more anharmonic termsIf keep just this and TN: This is coupled multidimensional cant separate as writtenTN is diagonal: q = TN = TN = (direct product
10、?)In this form:VN = VN = ½ q1 q2 qN goal change coordinatesT = V = both terms diagonal, to span spaceQi = need transformation L ® diagonal matrix, li on diagonalwriting trans form: = matrix of eigenvectors of , L-1 = LTli = eigenvalues of secular determinant:solve det ( - djk lm) = 0U¢
11、;¢ ® 3N x 3N, 3N lm values but 6 ® zeroplug lm into secular equations:(Ujk - djk lm) km = 0 = km Qi = km qkand inverse qj = å jk Qkor q = QQ = T qPut it all together2Vvib = = (LQ)T U¢¢ (LQ) = QT LT U¢¢ L Q= QT L Q or 2V = å lm Qk2 ® diagonalsame idea
12、:2T = ® diagonal (LT L = 1)can separate solve one coordinate at a time (H = )Classical: F = ma = = = -l Qwave equation: + = 0Þ Qk = Bk sin (l½ t + bk)Quantum MechanicsH = TN + VN= ½ å Qk2 + ½ å lk Qk2 = each one is a 1-D harmonic oscillator problemKnow solution:Hvi
13、b = hkhk ck = Ek ckEvib = (uk + ½) h nkEk = (uk + ½) h nkYvib = cuk (Qk)ck = Nke Huk (ak½ Qk)ak = Note: cant simply write k,m nowrecall: summed H ® product w/f® Total energy sum independent vibrational energiesNote zero potential E, ½ h uk ® non ?® Product fun
14、ction makes determinant easieruse Group TheoryGyvib = Gcukso need know representation of each vibration (keep doing that) and take product ® representation of full w/flook at what changes ® unchanged no contributionsSelection rules IRhow determine?expand: m = me + Qk + + constant but vecto
15、r leads to DJ = ±1,0 rotationeg: This term only non-zero pure rotation, orientation is independent2nd term ® vibrational excitestill orientation effect ® DJ = ±1,0vibration (harmonic oscillator) ® Duk = ±1but only uk change Duj = 0 j ¹ kand dipole moment must chang
16、e along coordinate Qkto do this Qk and m must have same symmetryGroup Theory language: Gm Ì GQk Ì Gxso look in tablerepresentations for x,y,z and vibrational IR allowed (assume c¢¢ = u = ?)Raman Spectra selectiona = ae + Qk + Qjsame ideaae ® pure rotation, transform as x2, y
17、2, z2 xy, yz, zx, DJ = 0, ±1, ±2 Þ polarizability must change to see vibrational transitionDuk = ±1, Duj = 0 ® exact same ® Gvib Ì Ga Ì Gx2,y2,z2,xy, yz,xz® see Character TableHarmonic ApproximationRotation effects see Handout Banwell depends on symmetry1
18、1 vibrations ® stretch along axisC¥u ® A1 (å+)å Þ M = 0, in terms of angular momentumD¥u ® A1U (åu+), A1gDu = ±1, DJ = ±1IRJust like diatomicDJ = 0 possibleDu = ±1, DJ = 0Ramandue to K = 0if electron angular momentum vibrations ® disto
19、rt molecule from linear (bend)C¥u - E1 (x,y) ; D¥h - E1u (Pu) ® IR allowedC¥u - E1, E2 ; D¥h - E1g,2g (Pg, Dg) ® Raman allowedDu = ±1, DJ = 0, ±1 IRP,Q,R branchesDu = ±1, DJ = 0, ±1, ±2 RamanO,P,Q,R,S branchesIsotopes spin of nuclei total w/f fe
20、rmion asymmetry (-1)get intensity alteration: J even, oddexchange symmetry: bosom symmetry (+1)Note pure rotation, this would only be Raman vibration / rotation see change symmetry but population effect remainsSpherical top moleculesA1 ® not allowed ® IRTotally symmetric modes: Du = ±
21、1, DJ = 0, ±1, ±2Asymmetric modes (T2)Du = ±1, DJ = 0, ±1; DJ = 0, ±1, ±2Sort of like diatomic but degeneracy in K = (2J + 1)ADD Infra-red spectroscopyADD Banwell-Fund. MoleculeADD Infra-red spectroscopySummaryIR selection rules ¹ 0DuK = ±1, DuJ = 0 j ¹ K
22、 ¹ 0DJ = 0, ±1 DM = 0, ±1DK = 0 ¹ 0GQK Ì Gm = GxyzRaman same except:DJ = 0, ±1, ±2 since operator Y2±1¹2GQK Ì Ga = Gx2,y2,z2,xz,yz,xzIR dipole moment change / Raman polarizability changecenter of symmetry IR/Raman u + g exclusiveLinear A1 modes (E) I
23、RP,R branch, DJ ¹ 0Note: D¥h no IR for symmetry stretches / need symmetry A¢¢1uRaman can have DJ = 0, ±2q,Q,S branchE modes (P) IR P,Q,RDJ = ±1, 0Assume start ground state u = 0 Þ c0 = total symmetry / if higher temperaturecan start u = 1 on higher Þ hot bend
24、still Du ¹ 0Isotopes ® if center of symmetry, i, then spin ½ asymmetryget alternating intensity J odd, evendue to population ½ + ½ = 0Raman Polarization 2 photon ® can measure scalar or ll to excitationSpherical topà = ® polarized ® total symmetryTotal sy
25、mmetryA1 mode Raman Du = ±1DJ = 0, ±1, ±2IR not allowed (xyz T)Asymmetry MoleculesT2Du = ±1DJ = 0, ±1 IRDJ = 0, ±1, ±2 Ramanlike linear but DK = 0,K-degeneracy (2J + 1) affect intensityADDADDADDADDSymmetrical Topsparallel vibration ® Gvib = Gz Du = ±1, DJ = 0,±1, DK = 0note this is same
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版幼儿园老师雇佣合同
- 吊车司机雇佣合同
- 二零二五版集体土地厂房买卖合同
- 二零二五房产财产抵押担保合同
- 个人劳务合同书模板
- 2025员工三级安全培训考试试题含答案【培优B卷】
- 《商品房预售合同样本》
- 租赁车辆使用合同书及违约赔偿事项
- 池塘租赁合同
- 广告策划合同
- 山东省临沂市河东区2023-2024学年七年级下学期期中测试历史试题
- 江苏省昆山、太仓、常熟、张家港市2023-2024学年下学期七年级数学期中试题
- 生物地球化学性疾病试题
- 休闲与旅游农业课件
- 感觉障碍护理课件
- 体育运动员参赛健康状况证明模板
- 教师的挑战:宁静的课堂革命
- 菲亚特博悦说明书
- 空调维保服务方案(技术方案)
- 高空发光字安装应急预案
- 量具能力准则Cg-Cgk评价报告
评论
0/150
提交评论