




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.定积分的换元积分法与分部积分法教学目的:掌握定积分换元积分法与分部积分法难点:定积分换元条件的掌握重点:换元积分法与分部积分法由牛顿莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的1定积分换元法定理 假设(1) 函数在区间上连续;(2) 函数在区间上有连续且不变号的导数;(3) 当在变化时,的值在上变化,且,则有 (1)本定理证明从略在应用时必须注意变换应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分例1 计算解 令,则当时,;当时,于是
2、例2 计算aaOxy解 令,则当时,;当时,故 图58 显然,这个定积分的值就是圆在第一象限那部分的面积(图58)例3 计算解法一 令,则当时,;当时,于是解法二 也可以不明显地写出新变量,这样定积分的上、下限也不要改变即 此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元不需要变换上、下限例4 计算解 注去绝对值时注意符号 =例5 计算解 设,则当时,;当时,= 例6 设在上连续,证明:(1) 若为奇函数,则;(2) 若为偶函数,则证 由于,对上式右端第一个积分作变换,有故(1) 当为奇函数时,故(2) 当为偶函数时,故利用例6的结论能很方便地求出一些定积分的值 例如2定积分的分部积分法设函数与均在区间上有连续的导数,由微分法则,可得等式两边同时在区间上积分,有 (2)公式(2)称为定积分的分部积分公式,其中与是自变量的下限与上限例7 计算解 令,则故例8 计算解 例9 计算解 =例10 计算解 即 注移项得故 例11 计算解 先用换元法,令,则 当时,;当时, 于是再用分部积分法,得小结:1定积分换元积分定理:假设(1) 函数在区间上连续;(2) 函数在区间上有连续且不变号的导数;(3) 当在变化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 维持性血液透析患者甲状旁腺素与心血管事件的相关性研究
- 基于使用后评价的社区养老设施公共空间优化策略研究-以西安市雁塔区为例
- 2025-2030中国橡胶、塑料和化学品领域的机器人技术行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国椰子衍生脂肪酸行业市场现状供需分析及投资评估规划分析研究报告
- 建筑工程结构设计测试卷
- 2025年大学统计学期末考试题库:统计软件自编码器应用试题试卷
- 2025年宠物美容师职业技能考核试卷:宠物护理与美容工具使用技巧试题
- 2025年无人机驾驶员职业技能考核试卷(无人机飞行器动力系统与能源)
- 企业年度客户答谢活动方案
- 金融服务及咨询服务协议
- 2024年河南轻工职业学院高职单招语文历年参考题库含答案解析
- 即时通讯系统建设方案
- 动车乘务实务知到智慧树章节测试课后答案2024年秋陕西交通职业技术学院
- 胎盘植入课件讲义版
- 山东铁投集团招聘笔试冲刺题2025
- 2025年江苏盐城东方集团招聘笔试参考题库含答案解析
- 2021版中医疾病医保对应中医疾病医保2
- 政府绩效评估 课件 蔡立辉 第1-5章 导论 -政府绩效评估程序
- 食堂负责人岗位职责
- 车间排产计划培训
- 无菌医疗器械培训课件
评论
0/150
提交评论