版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2017年重点中学八年级下学期期中数学试卷两套汇编七附答案解析八年级(下)期中数学试卷一、解答题(共12小题,满分36分)1下列计算错误的是()A =B +=C÷=2D =22下列各式中最简二次根式为()ABCD3下列各组长度的线段能组成直角三角形的是()Aa=2,b=3,c=4Ba=4,b=4,c=5Ca=5,b=6,c=7Da=5,b=12,c=134直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为()A16 cmB4cmC12cmD8cm5如图所示,在数轴上点A所表示的数为a,则a的值为()A1B1CD1+6一个四边形的三个相邻内角度数依次如下,那么其中是
2、平行四边形的是()A88°,108°,88°B88°,104°,108°C88°,92°,92°D88°,92°,88°7下列命题中是真命题的是()A两边相等的平行四边形是菱形B一组对边平行一组对边相等的四边形是平行四边形C两条对角线相等的平行四边形是矩形D对角线互相垂直且相等的四边形是正方形8如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90°时,它是矩形D当AC=BD时,它是正方形9如
3、图图象反映的过程是:小明从家跑到体育馆,在那里锻炼了阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是分钟10下列各曲线中不能表示y是x的函数的是()ABCD11如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2A28B49C98D14712如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PEAC于E,PFBD于F,则PE+PF等于()ABCD二、认真填一填,把答案写在横线上(本题有6小题,每题3分,共18
4、分)13函数y=中,自变量x的取值范围是计算()2的结果是化简的结果是14直角三角形两条直角边的长分别为12和5,则斜边上的中线等于15如图,ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=16如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米17根据如图的程序,计算当输入x=3时,输出的结果y=18如图,OP=1,过P作PP1OP且PP1=1,得OP1=;再过P1作P1P2OP1且P1P2=1,得OP2=;又过P2作P2P3OP2且P2P3=1,得OP3=2依此法继续作下去,得=三、解答题(19,20题每题6分,21
5、,22题每题8分,23,24每题9分)19(6分)计算:(1)4+; (2)2×÷5;(3)(+3)(3)20(6分)如图,矩形ABCD的两条对角线AC、BD相交于点O,AOD=120°,AB=2求矩形边BC的长?21(8分)如图,ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形22(8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23(9分)如图
6、,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE(1)求证:BD=EC;(2)若E=50°,求BAO的大小24(9分)已知:如图,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G(1)求证:ADECBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论四思考题(15,26题每题10分)25(10分)观察下列各式及其验证过程:验证: =;验证: =;验证: =;验证: =(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意
7、自然数,且n2)表示的等式,并给出证明26(10分)如图所示,在梯形ABCD中,ADBC,B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD参考答案与试题解析一、解答题(共12小题,满分36分)1下列计算错误的是()A =B +=C÷=2D =2【考点】二
8、次根式的混合运算【分析】利用二次根式的运算方法逐一算出结果,比较得出答案即可【解答】解:A、=,计算正确;B、+,不能合并,原题计算错误;C、÷=2,计算正确;D、=2,计算正确故选:B【点评】此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键2下列各式中最简二次根式为()ABCD【考点】最简二次根式【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【解答】解:A被开方数含分母,故A错误;B被开方数含能开得尽方的因数或因式,故B错误;C被开方数含分母,故C错误;D被开方数不含分母
9、;被开方数不含能开得尽方的因数或因式,故D正确;故选:D【点评】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式3下列各组长度的线段能组成直角三角形的是()Aa=2,b=3,c=4Ba=4,b=4,c=5Ca=5,b=6,c=7Da=5,b=12,c=13【考点】勾股定理的逆定理【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个三角形就不是直角三角形【解答】解:A、22+3242,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、42+4
10、252,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、52+6272,根据勾股定理的逆定理不是直角三角形,故此选项错误;D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确故选:D【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为()A16 cmB4cmC12cmD8cm【考点】含30度角的直角三角形【分析】根据在直角三角形中,30°角所对的直角边等于斜边的一半可得答案
11、【解答】解:直角三角形一条直角边长为8cm,它所对的角为30°,斜边为16cm,故选:A【点评】此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半5如图所示,在数轴上点A所表示的数为a,则a的值为()A1B1CD1+【考点】勾股定理;实数与数轴【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值【解答】解:如图,点A在以O为圆心,OB长为半径的圆上在直角BOC中,OC=2,BC=1,则根据勾股定理知OB=,OA=OB=,a=1故选A【点评】本题
12、考查了勾股定理、实数与数轴找出OA=OB是解题的关键6一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A88°,108°,88°B88°,104°,108°C88°,92°,92°D88°,92°,88°【考点】平行四边形的判定【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可【解答】解:两组对角分别相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108
13、6;,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中满足两组对角分别相等,因而是平行四边形故选D【点评】此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形,错选C7下列命题中是真命题的是()A两边相等的平行四边形是菱形B一组对边平行一组对边相等的四边形是平行四边形C两条对角线相等的平行四边形是矩形D对角线互相垂直且相等的四边形是正方形【考点】命题与定理【分析】根据菱
14、形的判定方法对A进行判断;根据平行四边形的判定方法对B进行判断;根据矩形的判定方法对C进行判断;根据正方形的判定方法对D进行判断【解答】解:A、两邻边相等的平行四边形是菱形,所以A选项错误;B、一组对边平行且这组对边相等的四边形是平行四边形,所以B选项错误;C、两条对角线相等的平行四边形是矩形,所以C选项正确;D、对角线互相垂直且相等的平行四边形是正方形,所以D选项错误故选C【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题8如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90
15、176;时,它是矩形D当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、四边形ABCD是平行四边形,BO=OD,ACBD,AB2=BO2+AO2,AD2=DO2+AO2,AB=AD,四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边
16、形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错9如图图象反映的过程是:小明从家跑到体育馆,在那里锻炼了阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是50分钟【考点】函数的图象【分析】依题意,根据函数图象可知,在体育馆锻炼和在新华书店买书这两段时间内路程没有变化,易求时间【解答】解:在体育馆锻炼和在新华书店买书这
17、两段时间内,路程都没有变化,即与x轴平行,那么他共用去的时间是(3515)+(8050)=50分故答案为:50【点评】本题主要考查了函数的图象,读懂图意,理解时间增多,路程没有变化的函数图象是与x轴平行是解决本题的关键10下列各曲线中不能表示y是x的函数的是()ABCD【考点】函数的概念【分析】在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点根据定义即可判断【解答】解:显然A、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;B、对于x0的任何值,y都有二个值与之相对应,则y不是x的函数;故选:B【点评】本题主要考查了函数的定
18、义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应11如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2A28B49C98D147【考点】勾股定理【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可【解答】解:所有的三角形都是直角三角形,所有的四边形都是正方形,正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又a2+b2=x2,c2+d2=y2,正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)
19、=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2)故选:D【点评】本题主要了勾股定理,根据数形结合得出正方形之间面积关系是解题关键12如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PEAC于E,PFBD于F,则PE+PF等于()ABCD【考点】矩形的性质;三角形的面积;勾股定理【分析】连接OP,过D作DMAC于M,求出AC长,根据三角形的面积公式求出CM的值,根据SAOD=SAPO+SDPO代入求出PE+PF=DM即可【解答】解:连接OP,过D作DMAC于M,四边形ABCD是矩形,AO=OC=AC,OD=OB=BD,AC=BD,ADC
20、=90°OA=OD,由勾股定理得:AC=5,SADC=×3×4=×5×DM,DM=,SAOD=SAPO+SDPO,(AO×DM)=(AO×PE)+(DO×PF),即PE+PF=DM=,故选B【点评】本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出PE+PF=DM二、认真填一填,把答案写在横线上(本题有6小题,每题3分,共18分)13函数y=中,自变量x的取值范围是x2计算()2的结果是2化简的结果是y【考点】函数自变量的取值范围【分析】根据分母不等于0即可得;由二次根式的性质可得;分母有理化可得【
21、解答】解:函数y=中,x20,x2;()2=2;=y;故答案为:x2,2, y【点评】本题主要考查函数自变量的取值范围、二次根式的性质与化简,熟练掌握常见函数自变量取值范围确定及二次根式的性质是关键14直角三角形两条直角边的长分别为12和5,则斜边上的中线等于6.5【考点】勾股定理;直角三角形斜边上的中线【分析】利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题【解答】解:如图,在ABC中,C=90°,AC=12,BC=5,则根据勾股定理知,AB=13,CD为斜边AB上的中线,CD=AB=6.5故答案为:6.5【点评】本题考查了勾股定理、直角三角形斜边
22、上的中线勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形,两直角边的平方和等于斜边的平方直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半15如图,ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=12【考点】三角形中位线定理【分析】由于D、E分别为AB、AC边上的中点,那么DE是ABC的中位线,根据三角形中位线定理可求BC【解答】解:如图所示,D、E分别为AB、AC边上的中点,DE是ABC的中位线,DE=BC,BC=12故答案是12【点评】本题考查了三角形中位线定理三角形的中位线等于第三边的一半16如图,今年的冰雪灾害中,一棵大树
23、在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是8米【考点】勾股定理的应用【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边【解答】解:AC=4米,BC=3米,ACB=90°,折断的部分长为=5,折断前高度为5+3=8(米)【点评】此题主要考查学生对勾股定理在实际生活中的运用能力17根据如图的程序,计算当输入x=3时,输出的结果y=2【考点】代数式求值【分析】先由x=31,确定x与y的关系式为y=x+5,然后代值计算即可【解答】解:x=31,y=x+5=3+5=2故答案为2【点评】本题考查了代数式求值:把满足题意的字母的值代
24、入代数式,然后进行实数运算即可18如图,OP=1,过P作PP1OP且PP1=1,得OP1=;再过P1作P1P2OP1且P1P2=1,得OP2=;又过P2作P2P3OP2且P2P3=1,得OP3=2依此法继续作下去,得=【考点】勾股定理【分析】根据勾股定理分别列式计算,然后根据被开方数的变化规律解答,再根据三角形的面积公式即可求解【解答】解:OP=1,OP1=,OP2=,OP3=2,OP4=,OP2014=,=××1=故答案为:【点评】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键,同时考查了三角形的面积三、解答题(19,20题每题6分
25、,21,22题每题8分,23,24每题9分)19计算:(1)4+; (2)2×÷5;(3)(+3)(3)【考点】二次根式的混合运算【分析】(1)先化简二次根式,再合并同类二次根式(2)根据二次根式的乘除法则化简计算即可(3)利用平方差公式计算即可【解答】解:(1)原式=4+32=5(2)原式=2×××=(3)原式=()232=7【点评】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型20如图,矩形ABCD的两条对角线AC、BD相交于点O,AOD=120°,AB=2求矩形边
26、BC的长?【考点】矩形的性质【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出AOB,然后判断出AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求出AC,再用勾股定理即可【解答】解:在矩形ABCD中,OA=OB=AC,AOD=120°,AOB=180°AOD=180°120°=60°,AOB是等边三角形,OA=AB=2,AC=2OA=2×2=4在RtABC中,根据勾股定理得,BC=2【点评】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理,熟记矩形的对角线互相平分且相等是解题的关键21如
27、图,ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形【考点】平行四边形的判定与性质【分析】首先利用平行四边形的性质,得出对角线互相平分,进而得出EO=FO,BO=DO,即可得出答案【解答】证明:ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,AO=CO,BO=DO,AE=CF,AF=EC,则FO=EO,四边形BFDE是平行四边形【点评】此题主要考查了平行四边形的判定与性质,得出FO=EO是解题关键22如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的
28、顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?【考点】勾股定理的应用【分析】(1)在RtABE中利用勾股定理求出AC的长即可;(2)首先在RtCDE中利用勾股定理求出DE的长,然后再计算出DB的长即可【解答】解:(1)由题意得:AB=2.5米,BE=0.7米,AE2=AB2BE2,AE=2.4米;(2)由题意得:EC=2.40.4=2(米),DE2=CD2CE2,DE=1.5(米),BD=0.8米【点评】此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方23如图,已知菱形ABCD的对角线相交于点O,延长AB至点
29、E,使BE=AB,连接CE(1)求证:BD=EC;(2)若E=50°,求BAO的大小【考点】菱形的性质;平行四边形的判定与性质【分析】(1)根据菱形的对边平行且相等可得AB=CD,ABCD,然后证明得到BE=CD,BECD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出ABO的度数,再根据菱形的对角线互相垂直可得ACBD,然后根据直角三角形两锐角互余计算即可得解【解答】(1)证明:菱形ABCD,AB=CD,ABCD,又BE=AB,BE=CD,BECD,四边形BECD是平行四边形,BD=EC;(2)解:平行四边形BECD,B
30、DCE,ABO=E=50°,又菱形ABCD,AC丄BD,BAO=90°ABO=40°【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键24已知:如图,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G(1)求证:ADECBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论【考点】全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定【分析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)
31、来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出2+3=90°即ADB=90°,所以判定四边形AGBD是矩形【解答】(1)证明:四边形ABCD是平行四边形,4=C,AD=CB,AB=CD点E、F分别是AB、CD的中点,AE=AB,CF=CDAE=CF在AED和CBF中,ADECBF(SAS)(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形证明:四边形ABCD是平行四边形,ADBCAGBD,四边形AGBD是平行四边形四边形BEDF是菱形,DE=BEAE=BE,AE=BE=DE1=2,3=41+2+3+4=180°,22+23=18
32、0°2+3=90°即ADB=90°四边形AGBD是矩形【点评】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:SSS,SAS,AAS,ASA四思考题(15,26题每题10分)25(10分)(2000河北)观察下列各式及其验证过程:验证: =;验证: =;验证: =;验证: =(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意
33、自然数,且n2)表示的等式,并给出证明【考点】算术平方根【分析】(1)通过观察,不难发现:等式的变形过程利用了二次根式的性质a=(a0),把根号外的移到根号内;再根据“同分母的分式相加,分母不变,分子相加”这一法则的倒用来进行拆分,同时要注意因式分解进行约分,最后结果中的被开方数是两个数相加,两个加数分别是左边根号外的和根号内的;(2)根据上述变形过程的规律,即可推广到一般表示左边的式子时,注意根号外的和根号内的分子、分母之间的关系:根号外的和根号内的分子相同,根号内的分子是分母的平方减去1【解答】解:(1)验证如下:左边=右边,故猜想正确;(2)证明如下:左边=右边【点评】此题是一个找规律的
34、题目,主要考查了二次根式的性质观察时,既要注意观察等式的左右两边的联系,还要注意右边必须是一种特殊形式26(10分)(2016春天河区期中)如图所示,在梯形ABCD中,ADBC,B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD【考点】矩形的判定;平行四边形的判定;
35、梯形【分析】(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可【解答】解:(1)设经过x(s),四边形PQCD为平行四边形即PD=CQ所以24x=3x,解得:x=6(2)设经过y(s),四边形PQBA为矩形,即AP=BQ,所以y=263y,解得:y=(3)设经过t(s),四边形PQCD是等腰梯形过Q点作QEAD,过D点作DFBC,QEP=DFC=90°四边形PQCD是等腰梯形,PQ=DC又ADBC,
36、B=90°,AB=QE=DF在RtEQP和RtFDC中,RtEQPRtFDC(HL)FC=EP=BCAD=2624=2又AE=BQ=263t,EP=APAE=t(263t)=2得:t=7经过7s,PQ=CD【点评】此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解八年级(下)期中数学试卷一、选择题1二次根式有意义的条件是()Ax3Bx3Cx3Dx32下列各式中,是最简二次根式的是()ABCD3下列命题中,正确的个数是()若三条线段的比为1:1:,则它们组成一个等腰三角形;两条对角线相等的平行四边形是矩形;对角线互相平分且相等的四边形是矩形;两个邻
37、角相等是平行四边形是矩形A1个B2个C3个D4个4如图,在ABCD中,已知AD=5cm,AB=3cm,AE平分BAD交BC边于点E,则EC等于()A1cmB2cmC3cmD4cm5如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,则重叠部分AFC的面积为()A6B8C10D126如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A13B26C47D94二、填空题7在平面直角坐标系中,点A(1,0)与点B(0,2)的距离是8如图,在四边形ABCD中,已知AB=CD,
38、再添加一个条件(写出一个即可),则四边形ABCD是平行四边形(图形中不再添加辅助线)9若二次根式化简后的结果等于3,则m的值是10矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm11若实数a,b满足,则以a,b的值为边长的等腰三角形的周长为12如图,每个小正方形的边长为1,在ABC中,点D为AB的中点,则线段CD的长为13如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,A=120°,则EF=cm14有一块直角三角形的绿地,量得两直角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是
39、以8m为直角边的直角三角形,扩充后等腰三角形绿地的面积是三、解答题(共58分)15(8分)16(6分)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分17(6分)如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且B=90°求四边形ABCD的面积18(6分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F求证:OE=OF19(6分)如图,已知ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC20(8分)如图,在ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行
40、线交CE的延长线于点F,且AF=BD,连接BF(1)线段BD与CD有什么数量关系,并说明理由;(2)当ABC满足什么条件时,四边形AFBD是矩形?并说明理由21(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AGDB,交CB的延长线于点G(1)求证:DEBF;(2)若G=90,求证:四边形DEBF是菱形22(10分)如图,梯形ABCD中,ADBC,B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动已知P、Q两点分别从A、C同时出发,当
41、其中一点到达端点时,另一点也随之停止运动假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)t为何值时,四边形ABQP是矩形?(3)在某个时刻,四边形PQCD可能是菱形吗?为什么?参考答案与试题解析一、选择题1二次根式有意义的条件是()Ax3Bx3Cx3Dx3【考点】二次根式有意义的条件【分析】根据二次根式有意义的条件求出x+30,求出即可【解答】解:要使有意义,必须x+30,x3,故选C【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a02下列各式中,是最简二次根式的是()ABCD【考点】最简二次根式【分析】根据最简二次根式的定义:被开方数不含分母
42、,被开方数不含开的尽的因数或因式,可得答案【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数不含分母,被开方数不含开的尽的因数或因式,故B正确;C、被开方数含分母,故C错误;D、被开方数含开的尽的因数或因式,故D错误;故选:B【点评】本题考查了最简二次根式,被开方数不含分母,被开方数不含开的尽的因数或因式是解题关键3下列命题中,正确的个数是()若三条线段的比为1:1:,则它们组成一个等腰三角形;两条对角线相等的平行四边形是矩形;对角线互相平分且相等的四边形是矩形;两个邻角相等是平行四边形是矩形A1个B2个C3个D4个【考点】命题与定理【分析】利用等腰三角形的判定及矩形的判定方
43、法分别判断后即可确定答案【解答】解:根据三条线段的比为1:1:,则可得到该三角形的两边相等,所以它们组成一个等腰三角形,正确;两条对角线相等的平行四边形是矩形,正确;对角线互相平分且相等的四边形是矩形,正确;两个邻角相等是平行四边形是矩形,正确,故选D【点评】本题考查了等腰三角形的判定及矩形的判定方法,属于基础题,比较简单4如图,在ABCD中,已知AD=5cm,AB=3cm,AE平分BAD交BC边于点E,则EC等于()A1cmB2cmC3cmD4cm【考点】平行四边形的性质【分析】由平行四边形的性质和角平分线定义得出AEB=BAE,证出BE=AB=3cm,得出EC=BCBE=2cm即可【解答】
44、解:四边形ABCD是平行四边形,BC=AD=5cm,ADBC,DAE=AEB,AE平分BAD,BAE=DAE,AEB=BAE,BE=AB=3cm,EC=BCBE=53=2cm;故选:B【点评】本题看成了平行四边形的性质、等腰三角形的判定与性质、角平分线定义;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键5如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,则重叠部分AFC的面积为()A6B8C10D12【考点】翻折变换(折叠问题)【分析】因为BC为AF边上的高,要求AFC的面积,求得AF即可,求证AFDCFB,得BF=DF,设DF=x,则在RtAFD中,根据
45、勾股定理求x,于是得到AF=ABBF,即可得到结果【解答】解:易证AFDCFB,DF=BF,设DF=x,则AF=8x,在RtAFD中,(8x)2=x2+42,解之得:x=3,AF=ABFB=83=5,SAFC=AFBC=10故选C【点评】本题考查了翻折变换折叠问题,勾股定理的正确运用,本题中设DF=x,根据直角三角形AFD中运用勾股定理求x是解题的关键6如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A13B26C47D94【考点】勾股定理【分析】根据正方形的面积公式,结合勾股定理,能够导
46、出正方形A,B,C,D的面积和即为最大正方形的面积【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47故选:C【点评】能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积二、填空题7在平面直角坐标系中,点A(1,0)与点B(0,2)的距离是【考点】两点间的距离公式【分析】本题可根据两点之间的距离公式得出方程:,化简即可得出答案【解答】解:点A(1,0)与点B(0,2)的距离是: =故答案填:【点评】本题主要
47、考查了两点之间的距离公式,要熟记并灵活掌握8如图,在四边形ABCD中,已知AB=CD,再添加一个条件AD=BC(写出一个即可),则四边形ABCD是平行四边形(图形中不再添加辅助线)【考点】平行四边形的判定【分析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC故答案为:AD=BC(答案不唯一)【点评】此题主要考查平行四边形的判定是一个开放条件的题目,熟练掌握判定定理是解题的关键9若二次根式化简后的结果等于3,则m的值是±2【考点】二次根式的性质与化简【分析】根据题意列出算式,
48、根据二次根式的性质解答即可【解答】解:由题意得, =3,则2m2+1=9,解得,m=±2,故答案为:±2【点评】本题考查的是二次根式的化简,掌握二次根式的性质: =|a|是解题的关键10矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm【考点】矩形的性质【分析】根据矩形对角线相等且互相平分性质和题中条件易得AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可【解答】解:如图:AB=12cm,AOB=60°四边形是矩形,AC,BD是对角线OA=OB=OD=OC=BD=AC在AOB中,OA=OB,AOB=60°OA=O
49、B=AB=12cm,BD=2OB=2×12=24cm故答案为:24【点评】矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形本题比较简单,根据矩形的性质解答即可11若实数a,b满足,则以a,b的值为边长的等腰三角形的周长为10【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系【分析】先根据非负数的性质列式求出a、b,再分情况讨论求解即可【解答】解:根据题意得,a2=0,b4=0,解得a=2,b=4若a=2是腰长,则底边为4,三角形的三边分别为2、2、4,2+2=4,不能组成三角形,若a=4是腰长,则底边为2
50、,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10故答案为:10【点评】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解12如图,每个小正方形的边长为1,在ABC中,点D为AB的中点,则线段CD的长为【考点】勾股定理;直角三角形斜边上的中线;勾股定理的逆定理【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解【解答】解:观察图形AB=,AC=3,BC=2AC2+BC2=AB2,三角形为直角三角形,直角三角形中斜边上的中线等于斜边的一半CD=【点评】解决此类题目要熟记斜边上的中线等于斜边的一半注意勾股
51、定理的应用13如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,A=120°,则EF=cm【考点】菱形的性质;翻折变换(折叠问题)【分析】根据菱形性质得出ACBD,AC平分BAD,求出ABO=30°,求出AO,BO、DO,根据折叠得出EFAC,EF平分AO,推出EFBD,推出,EF为ABD的中位线,根据三角形中位线定理求出即可【解答】解:连接BD、AC,四边形ABCD是菱形,ACBD,AC平分BAD,BAD=120°,BAC=60°,ABO=90°60°=30°,AOB
52、=90°,AO=AB=×2=1,由勾股定理得:BO=DO=,A沿EF折叠与O重合,EFAC,EF平分AO,ACBD,EFBD,EF为ABD的中位线,EF=BD=(+)=,故答案为:【点评】本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力14有一块直角三角形的绿地,量得两直角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的面积是48m2或40m2【考点】勾股定理的应用;三角形的面积;等腰三角形的性质【分析】求出直角三角形的面积=24m2,分两种情况:扩充的直角三角形的两直角边长为8m和6m;扩充的直角三角形的两直角边长为8m和4m;分别求出面积即可【解答】解:直角三角形的绿地,两直角边长分别为6m,8m,面积=×6×8=24(m2),斜边长=10(m),分两种情况:扩充的直角三角形的两直角边长为8m和6m时;扩充后等腰三角形绿地的面积=2×24=48(m2);扩充的直角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《基础和声1》2021-2022学年第一学期期末试卷
- 吉首大学《操作系统》2021-2022学年期末试卷
- 《机床夹具设计》试卷11
- 吉林艺术学院《虚拟现实应用设计》2021-2022学年第一学期期末试卷
- 吉林艺术学院《民族音乐概论Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《广播电视概论》2021-2022学年第一学期期末试卷
- 2024年公租房摊位出租协议书模板
- 2024年大枣代加工协议书模板范本
- 关于尾款支付的协议书范文模板
- 2022年公务员多省联考《申论》真题(陕西B卷)及答案解析
- XXX200MW光伏发电项目施工组织设计
- 2024-2030年中国氦液化系统市场深度调查与未来发展前景预测研究报告
- 2024年历年中级经济师工商管理考试真题及答案
- 2024秋国家开放大学《管理英语1》形考任务1-8参考答案
- 网络安全教育主题班会(完整版)
- ISO∕IEC 27014-2020 信息安全、网络安全与隐私保护-信息安全治理(中文版-雷泽佳译2024)
- 2024广州市中小学新教师专业发展指标体系框架
- 青岛版五年级数学上册竖式计算题100道及答案
- 关注实习护士生心理健康课件
- 2024年东南亚心血管介入器械市场深度研究及预测报告
- 高级养老护理员试题与答案
评论
0/150
提交评论