人教版七年级下数学第六章平面直角坐标系导学案_第1页
人教版七年级下数学第六章平面直角坐标系导学案_第2页
人教版七年级下数学第六章平面直角坐标系导学案_第3页
人教版七年级下数学第六章平面直角坐标系导学案_第4页
人教版七年级下数学第六章平面直角坐标系导学案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 6.1.2 平面直角坐标系一、学习目标:1、认识平面直角坐标系,在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标; 2、能根据实际条件建立适当的平面直角坐标系。二、学习重难点:重点:正确建立平面直角坐标系,根据坐标描出点的位置,由点的位置确定点的坐标的。难点:根据实际位置建立平面直角坐标系。导学过程:(一)自主学习:上学期,我们学习了数轴,知道数轴是规定了 、 和 的直线。如图,你知道点A和点B的位置分别表示的有理数是多少吗?这个数叫做这个点的坐标。(二)合作探究:探索:请仔细阅读课本P4142页,完成下列填空:1平面直角坐标系:平面内两条互相 、 重合的 ,组成平面直

2、角坐标系。水平的数轴称为 或 ,习惯上取向 为正方向;竖直的数轴称为 或 ,习惯上取向 为方正向。两坐标轴的交点为平面直角坐标系的 ,记为O,其坐标为 。有了平面直角坐标系,平面内的点就可以用一个 来表示,叫做点的坐标。2建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫 , , , ,坐标轴上的点不属于 3通常当平面坐标系中有一点A, 过点A作横轴的垂线交横轴于a, 过点A作纵轴的垂线交纵轴于b,有序实数对(a ,b)叫做点A的坐标,其中a叫横坐标 ,b叫纵坐标 。这里的两个数据,一个表示水平方向与A点的距离,另一个表示竖直方向上到A点的距离。(三)课堂展示:1如图A点坐标为(4,5),请

3、你在坐标图中描出下列各点:B(-2,3),C(-4,-1),D(2.5,-2),E(0,4),F(3,0)。2写出图中的多边形ABCDEF各个顶点的坐标。 A( , ) B( , ) C( , ) D( , ) E ( , )F( , )。 如:若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,则六个顶点的坐标分别为:A(_,_),B(_,_),C(_,_),D(_,_),E(_,_),F(_,_)。 3在练习2中,(1)A(2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为_,横坐标不为0;B(0,3),F(0,3)在y轴上,可知它们的横坐标为_,纵坐标不为0。(2)由B(0,3)

4、,C(3,3)可以看出它们的纵坐标都是 ,即B、C两点到X轴的距离都是3,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。观察纵坐标有何特点?总结:坐标轴上的点的坐标中至少有一个是0;横轴上的点的_,纵轴上的点的_。2各象限内的点的坐标的符号有何特征呢?括号内填“+”或“”第一象限( , ),第二象限( , ),第三象限( , ), 第四象限( , )。(四)、感悟释疑:1点A(2,7)到x轴的距离为 ,到y轴的距离为 ;2若点P(a,b)在第四象限内,则a,b的取值范围是( )A、a0,b0 B、a0,b0C、a0,b0 D、a0,b03如图,在平面直角坐标系中表示下面各点: A(0,3

5、);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0) ;H(-3,5) (1)A点到原点O的距离是 ;(2)将点C向轴的负方向平移6个单位,它与点 重合;(3)连接CE,则直线CE与轴是什么关系?(4)点F分别到、轴的距离是多少?(5)观察点C与点E横纵坐标与位置的特点;(6)C与点H横纵坐标与位置的特点;(7)观察点C与点D横纵坐标与位置的特点。(五)、课堂小结:本节课你有哪些收获?(六)、达标测试:1点A(-2,3)到x轴的距离为 ,到y轴的距离是 。 2x轴上有A、B两点,A点坐标为(3,0),A、B之间的距离为5,则B点坐标为 。3若点N(a+

6、5,a2)在y轴上,则a= ,N点的坐标为 。4如果点A(x,y)在第三象限,则点B(x,y1)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5点P在y轴左方、x轴上方,距y轴、x轴分别为3、4个单位长度,点P的坐标是( )A.(3,4) B.(3,4) C.(4,3) D.(4,3)6已知点P(x,y)在第二象限,且,则点P的坐标为( )A.(-2,3) B.(2,-3) C.(-3,2) D.(2,3)7如图,点A的坐标为(-3,4)。(1)写出图中点B、C、D、E、F、G、H的坐标,并观察点A和C,点B和D有什么关系?(2)在图中标出(2,4)、(5,5)、(4,3)三点

7、的位置。 6.2.1用坐标表示地理位置一、学习目标:1、通过具体事例帮助了解用平面直角坐标系来表示地理位置的意义;2、掌握建立适当的直角坐标系描述地理位置的方法。二、学习重点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题。导学过程:(一)自主学习:1.平面直角坐标系的概念:平面内两条互相 、 重合的 组成的图形。2.各象限点的坐标的特点是:点P(x,y)在第一象限,则x 0,y 0.点P(x,y)在第二象限,则x 0,y 0.点P(x,y)在第三象限,则x 0,y 0.点P(x,y)在第四象限,则x 0,y 0.3.坐标轴上点的坐标的特点是:点P(x,y)在x轴上,则x ,y .点P(

8、x,y)在y轴上,则x ,y 。4.小学学过比例尺,我们知道:比例尺是图距与 的比。(二)合作探究: 探索:请仔细阅读课本P4950页,完成探究,并归纳利用平面直角坐标系来表示地理位置的一般步骤是:1、建立坐标系,选择一个适当的参照点为_,确定X轴、Y轴的_。2、根据具体问题确定适当的_,在坐标轴上标出_。3、在坐标平面内画出这些点,写出各点的_和各个地点的名称。即时练习:1某市有A、B、C、D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标。2小明同学利用暑假参观了花峪村果树种植基地,如图所示他从苹果园出发,沿(1,3),(-3,3

9、),(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点,看看能得到什么图形?(三)课堂展示:某公园中有“音乐喷泉”“绣湖”“游乐场”“蜡像馆”“蝴蝶园”等景点,以“音乐喷泉”为原点,取正东方向为x轴的正方向,取正北方向为y轴的正方向,一个方格的边长作为一个单位长度,建立直角坐标系。分别写出图中“绣湖”“游乐场”“蜡像馆”“蝴蝶园”的坐标。(1)什么位置是原点?(2)坐标轴的方向的实际意义是什么?(3)在右图中画出平面直角坐标系。(4)请你写出坐标系中其他四个景点的坐标。(5)请你再建立一个不同的适

10、当的直角坐标系,并表示出这些景点的位置。(6)比较不同的坐标系,你认为那种好?理由是什么?(7)思考:你认为如何建立直角坐标系表示给定的点或图形的位置。 (四)感悟释疑:1、如图,这是我军缴获的敌人埋设地雷的地图。通过破译的密码知道,一棵大树作为参照物,树的坐标是(10,-10)。这个区域埋设地雷的坐标分别是(10,20),(20,40),(30,30),(0,50),(-50,-40),(-40,40),(50,-30),( -10,0)。请在图中描出地雷的埋藏点,并在图上标出坐标,为我扫雷部队提供准确情报。2、根据下列条件,在右上方坐标纸中标出学校、工厂、体育馆、百货商店的位置。从学校向东

11、走300m,再向北走300m是工厂;学校向西走100m,再向北走200m是体育馆;从学校向南走150m,再向东走250m是百货商店。3、如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),请画出平面直角坐标系,并找出“炮”的坐标。(五)、课堂小结:本节课你有哪些收获?(六)、达标测试:1利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程为: 建立坐标系,选择一个适当的_为原点,确定x轴、y轴的_; 确定适当的_,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的_和各个地点的_。2图是某乡镇的示意图(图中每个小正方形的边长均为个单位长度)

12、。试建立直角坐标系,用坐标表示各地的位置:如果已知王马村的坐标是(0,0),请用坐标表示出大山镇、爱心中学的位置。如果已知映月湖的坐标是(6,-3),请用坐标表示出大山镇、红旗乡的位置。五、 课后反思 6.2.2用坐标表示平移一、 学习目标: 1、掌握坐标变化与图形平移的关系,能利用点的平移规律将图形进行平移;2、会根据图形上点的坐标的变化,来判定图形的移动过程。二、学习重点:坐标平移的方法三.授课时数: 一课时四.导学过程:(一)自主学习:上节课我们学习了用坐标表示地理位置,给我们的生活带来了很多方便,让我们可以准确找到某一个物体的位置。但在现实生活中,我们还会遇到“在平面内,将一个图形沿某

13、个方向移动一定的距离(这样的图形运动叫做平移,平移不改变物体的 和 ”(在上一章学过)。这时,又该如何来描述图形位置的变化呢?(二)合作探究: 探索一:请仔细阅读课本P51页,完成探究并归纳“图形平移与点的坐标变化”之间的关系向右平移a个单位(1)左、右平移:向左平移a个单位原图形上的点(x,y) ( )原图形上的点(x,y) ( )向上平移b个单位(2)上、下平移:向下平移b个单位原图形上的点(x,y) ( )原图形上的点(x,y) ( )即时练习一:1.在平面直角坐标系中,有一点P(-4,2),若将点P:(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标

14、为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)向上平移5个单位长度,所得点的坐标为_;2.已知A(1,4),B(-4,0),C(2,0)。 将ABC向左平移三个单位后,点A、B、C的坐标分别变为 , , 。将ABC向下平移三个单位后,点A、B、C的坐标分别变为 , , 。探索二:请仔细阅读课本P5152页,思考并归纳“点的坐标变化与图形平移”之间的关系(x+a,y) (1)横坐标变化,纵坐标不变:(x-a,y) 原图形上的点(x,y) 向 平移 个单位原图形上的点(x,y) 向 平移 个单位(x,y+b)(2)横坐标不变,纵坐标变化:(x,y-b)原图形上的点(x,y) 向 平移

15、个单位原图形上的点(x,y) 向 平移 个单位即时练习二:1.已知A(1,4),B(-4,0),C(2,0)。将ABC三顶点A、B、C的横坐标都增加2,相应的新图形就是把原图形向 平移了 个单位长度。将ABC三顶点A、B、C的纵坐标都增加3,相应的新图形就是把原图形向 平移了 个单位长度。将ABC三顶点A、B、C的横坐标都减少3,纵坐标都减少4相应的新图形就是把原图形先向 平移了 个单位长度,再向 平移了 个单位长度。(三)课堂展示:归纳:A (关于x轴对称), 不变,纵坐标 。A (关于y轴对称)纵坐标 , 互为相反数。如果改变点A的坐标,这个规律仍然成立吗?你能否用字母来表示一下这个规律呢

16、?在直角坐标系中,点(a,b)关于x轴的对称点的坐标为 ,关于y轴的对称点的坐标为 。 (四)感悟释疑:1、能完成坐标平面内的点的平移时,坐标是如何变化的吗?填写下图(h>0):(a, )向上平移h个单位 向左平移h个单位 向右平移h个单位 ( ,b) (a,b) ( ,b) 向下平移h个单位 (a, )难点透释:图形平移与坐标变化的关系图像左右平移,纵坐标不变,横坐标左(移)减右(移)加;图像上下平移,横坐标不变,纵坐标下(移)减上(移)加。2、已知点M(4,2),将点先向下平移3个单位长度,再向左平移3个单位长度,则点M在坐标系内的坐标为    

17、;       .3、平面直角坐标系中ABC三个顶点的横坐标保持不变, 纵坐标都减去了3,则得到的新三角形与原三角形相比向 平移了 个单位。(五)、课堂小结:本节课你有哪些收获? (六)达标测试:1、在平面直角坐标系中,将点(2,1)向右平移3个单位长度,可以得到对应点坐标 ;将点(2,-1)向左平移3个单位长度可得到对应点坐标 ; 将点(2,5)向上平移3单位长度可得对应点坐标 ;将点(-2,5)向下平移3单位长度可得对应点坐标 。2、线段AB两端点坐标分别为A(-1,4),B(-4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标依次分别为( )A.(-5,0),(-8,-3) B.(3,7),(0,5) C.(-5,4),(-8,1) D.(3,4),(0,1)3、坐标系中,将正方形向上平移3个单位后,得到的正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论