初一正负数的知识点的总结_第1页
初一正负数的知识点的总结_第2页
初一正负数的知识点的总结_第3页
初一正负数的知识点的总结_第4页
初一正负数的知识点的总结_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一正负数的知识点的总结正数大于0,负数小于0,正数大于负数。下面是XXXW大家整理的关于初一正负数的知识点的总结,希望对您有所帮助。欢迎大家阅读参考学习 !初一正负数的知识点的总结1( 一 ) 正负数1. 正数:大于0的数。2. 负数:小于0的数。3. 0 即不是正数也不是负数。4. 正数大于0,负数小于0,正数大于负数。( 二 ) 有理数1. 有理数:由整数和分数组成的数。包括:正整数、 0、负整数,正分数、负分数。可以写成两个整之比的形式。 ( 无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:兀)2. 整数:正整数、0、负整数,统称整数。3. 分小:

2、正分小、负分小。4. 三 ) 小轴1. 小轴:用直线上的点表示小,这条直线叫做小轴。 ( 画一条直线,在直线上任取一点表示小0,这个零点叫做原点,规定直线上从原点向右或向上为正方向; 选取适当的长度为单位长度,以便在小轴上取点。 )2. 小轴的三要素:原点、正方向、单位长度。3. 相反小:只有符号不同的两个小叫做互为相反小。 0 的相反小还是0。4. 绝对值:正小的绝对值是它本身,负小的绝对值是它的相反小 ;0 的绝对值是0 ,两个负小,绝对值大的反而小。( 四 ) 有理小的加减法1. 先定符号,再算绝对值。2. 加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加小的

3、符号,并用较大的绝对值减去较小的绝对值。互为相反小的两个小相加得 0。一个小同0 相加减,仍得这个小。3. 加法交换律:a+b=b+a 两个小相加,交换加小的位置,和不变。4. 加法结合律:(a+b)+c=a+(b+c) 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5.a?b=a+(?b) 减去一个数,等于加这个数的相反数。( 五 ) 有理数乘法( 先定积的符号,再定积的大小 )1. 同号得正,异号得负,并把绝对值相乘。任何数同 0 相乘,都得0。2. 乘积是 1 的两个数互为倒数。3. 乘法交换律:ab=ba4. 乘法结合律:(ab)c=a(bc)5. 乘法分配律:a(b+

4、c)=ab+ac初一正负数的知识点的总结2( 一 ) 有理数除法1. 先将除法化成乘法,然后定符号,最后求结果。2. 除以一个不等于0 的数,等于乘这个数的倒数。3. 两数相除,同号得正,异号得负,并把绝对值相除, 0 除以任何一个不等于0的数,都得0。 (二)乘方 1. 求 n 个相同因数的积的运算,叫做乘方。写作an。 (乘方的结果叫幂, a 叫底数, n 叫指数 )2. 负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。 3. 同底数幂相乘,底不变,指数相加。4. 同底数幂相除,底不变,指数相减。( 三 ) 有理数的加减乘除混合运算法则1. 先乘方,再乘除,最后加减。2

5、. 同级运算,从左到右进行。3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。( 四 ) 科学记数法、近似数、有效数字。( 五 ) 整式1. 整式:单项式和多项式的统称叫整式。2. 单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3. 系数 ; 一个单项式中,数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5. 多项式:几个单项式的和叫做多项式。6. 项:组成多项式的每个单项式叫做多项式的项。7. 常数项:不含字母的项叫做常数项。8. 多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。9. 同类

6、项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。( 六 ) 整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1 .去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2 . 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变初一正负数的知识点的总结3教学目标1. 使学生

7、理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3. 使学生初步了解有理数的意义,并能将给出的有理数进行分类;4. 培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想。教学建议一、重点、难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0高5 摄氏度记作5,比0低 5 摄氏度,记作-5 ; 比海平面高 8848米,

8、记作 8848米,比海平面低155米记作-155 米。由这两个实例很自然地,把大于0 的数叫做正数,把加“ - ”号的数叫做负数 ;0 既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0 的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,

9、又不能同时属于不同的两类。二、知识结构1. 正数、负数和零的概念2. 有理数的分类三、教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的 . 从内容上讲,负数比非负数要抽象、难理解. 因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分( 即算术数 ). 这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了 .为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分

10、类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。四、概念的理解1 .对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带”号的数是负数。例如:一定是负数吗?答案是不一定。因为字母可以表示任意的数,若表示正数时,是负数; 当表示 0 时,就在 0 的前面加一个负号,仍是0, 0不分正负 ; 当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。2 .引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为 整数,整数也可以分为奇数和偶数两类,能被 2整除的数是偶数,如 -6, -4, -2

11、, 0, 2, 4, 6,不能被2整除的数是奇数,如-5, -4, -2, 1, 3, 53 .到现在为止,我们学过的数细分有五类:正整数、正分数、 0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4 .通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数 ; 负整数和 0 统称为非正整数。初一正负数的知识点的总结4有理数的分类整数和分数统称为有理数。1) 正整数、零、负整数统称为整数; 正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:2) 整数也可以看作分母为 1 的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此

12、,有理数按正数、负数、 0 的关系还可分类为:3) 注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。4) 分数和小数的区别:分数 ( 既约分数 ) 都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。5) 到目前为止,所学过的数( 除外 ) 都是有理数。教学设计示例(一)一、素质教育目标( 一 ) 知识教学点1. 了解:是实际需要的 .2. 掌握:会判断一个数是正数还是负数.3. 应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.

13、( 二 ) 能力训练点通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力 .( 三 ) 德育渗透点1 .从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2 . 通过正负数的学习,渗透对立、统一的辩证思想.( 四 ) 美育渗透点通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受 .二、学法引导1 .教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识 .2 .学生学法:研究实际问题-认识负数-负数在实际中的应用三、重点、难点、疑点及解决办法1.

14、 重点:会判断正数、负数,运用正负数表示具有相反意义的量.2. 难点:负数的引入 .3. 疑点:负数概念的建立.四、课时安排2 课时五、教具学具准备投影仪 ( 电脑 ) 、自制活动胶片、中国地图 .六、师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈 .七、教学步骤( 一 ) 创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数师小结:为了实际生活需要,在数物体个数时,1、2、3出现了自然数,没有物体时用自然数0 表示,当测量或计算有时不能

15、得出整数,我们用分数或小数表示【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问 .【教法说明】教师利用问题“有没有比0 小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.( 二 ) 探索新知,讲授新课师:为了研究这个问题,我们看两个实例( 出示投影 1) 用复合胶片翻四次在冬日一天中,一个测量员测了中午12 点,晚 6 点,夜间 12 点,早 6 点的气温如下:你能读出它们所表示的温度各是多

16、少吗 ?(单位)学生活动:看图回答10,5,零下5,零下10.初一正负数的知识点的总结5教学目标:1、在熟悉的生活情境中,了解负数的意义,会读写负数。2、会用负数表示一些日常生活中的量,体验数学的应用价值。3、在认识负数和应用负数解决问题的过程中获得成功的体验,坚定学好数学的信心。教学重点:巩固对负数的认识。教学难点:掌握正负数表示相反意义的量。教具准备:多媒体课件教学方法:自学教材、整理梳理、巩固练习教学过程:一、梳理知识。1、认真看课本第 87 页到 91 页的内容,回忆整理有关负数的知识(1) 举例说明如何读写正负数?在书写正数和负数时应注意些什么 ?(2) 为什么 0 既不是正数也不是

17、负数?正数都 0; 负数都 0。(3) 正数负数表示什么样的两种量?你能举出生活中的例子吗?2、 4 分钟后,对子之间相互交流,如用疑问可以小组讨论!3、小结:我们把像+3、+15、+8844.43等这样的数叫做正数;像-6、,-10, -155等这样的数叫做负数。0小于一切正数,大于一切负数,0是正、负数的分 界点。 0 既不是正数,也不是负数。正数、负数表示意义相反的两种量。二、基础练习。1、展示一(1)如果前进30m记作+30m那么-20m表示(),后退10m记作()。(2)如果+60m表示上升60ml那么-60m表示(),下降50m记作()。(3)如果+120mg示向东行120ml那么

18、-70m表示(),向西行50m记作()。要求: 1、独立做题,。2、写完的同学对子之间相互检查3、展示二(1) 读一读,填一填。37, -78 , +20, -5 , 0, +121, 98, -1000 , -13 , 34, -34 。负数正数最后剩下一个数没有填入上面的框中,这个数是() 。(2) 六年级 3 个班进行智力抢答赛,答对1 题得 10 分,答错 1 题扣 10 分,不答题得 0 分。已知一班答对1 题,二班答错1 题,三班对、错各 1 题,请写出这3 个班的得分情况。一班 () 分二班 () 分三班 () 分三、提高练习。( 一 ) 填一填1、如果向南行50m记作-50m,那么向北行45m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论