




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、生用七年级数学下册期末复习提纲华东师大YUKI was compiled on the morning of December 16, 2020x 5x+ll , 2%-4= 1+1一0.5X0.312 3)-4 5 21-2%36. m为何值时,关于x的方程4x 2m=3x+l的解是x = 2x 3nl的2七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(-)方程的变形法则法则1:方程两边都 或 同一个数或同一个,方程的解不变。例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7o在方程6x=-2x-6左右两边都加上4x,得到新方程: 8x=-6o移项:将方程中的
2、某些项改变符号后,从方程的一边移动到另 一边,这样的变形叫做移项,注意移项要变号。例如:将方程x-5 = 7移项得:x = 7+5 即 x=12(2)将方程4x = 3x - 4移项得:4x - 3x=- 4即x二-4法则2 :方程两边都除以或 同一个 的数,方程的解不变。2例如:将方程-5x = 2两边都除以-5得:31O9(2)将方程j x =-两边都乘以;得:x二;乙339这里的变形通常称为“将未知数的系数化为1"注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以 这个整数;如遇到未知数的系数为分数,“系数化为时,就 要乘以这个分数的倒数。(2)不论上一乘以或除以数
3、时,都要注意结果的符号。方程的解的概念:能够使方程左右两边都相等的未知数的 值.叫做方程的解。求不方程的解的过程,叫做解方程。(-)一元一次方程的概念及其解法1 .定义:只含有一个未知数.并且含有未知数的式子都是,未知数的次数是这样的方程叫做一元一次方 程。例如:方程7-3x=4、6x=2x-6都是一元一次方程。而这些方程 5x- 3x+l = 0、2x+y = l-3y、7 二 5 就不是一 X-1元一次方程。2 .一元一次方程的一般式为:ax+b=0 (其中a、b为常数,且 a#0)一元一次方程的一般式为:ax=b (其中a、b为常数,且 a#0)3 .解一元一次方程的一般步骤步骤:去分母
4、,去括号,移项,合并同类项,未知数的系数化 为lo注意:(1)方程中有多重括号时,一般应按先去小括号,再 去中括号.最后去大括号的方法去括号,每去一层括号合并同 类项一次,以简便运算,(2) “去分母”指去掉方程两边各项系数的分母;去分母时, 要求各分母的最小公倍数,去掉分母后,注意添括号。去分母 时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分 母)(三)一元一次方程的应用1 .纯数学上的应用:(1)一元一次方程定义的应用;(2) 方程解的概念的应用;(3)代数中的应用;(4)公式变形 等。2 .实际生活上的应用:(1)调配问题;(2)行程问题; (3)工程问题;(4)利息问题;(5)
5、面积问题等。3 .探索性应用:这类问题与上面的几类问题有联系,但也有 区别,有时是一种没有结论的问题,需要你给出结论并解答。 二、练习1.下列各式哪些是一元一次方程。d 2x+3X-(1) +1 =3x4 (2) = (3)x=o252(4)- - 2x=0(5) 3x y=l 十 2yx2 ,解下列方程。(x - 3) = 2 (x - 3)22 4=l-x 2520.3% ,.-x=+130.024 .解方程。(1) | 5x 2 | =35 .已知,|a 3|+(b十1尸二代数式2b a + "1,.1 .11 a. ,.的值比7b a十m多1,求m的值。222x-3v = 5
6、一x + y = -8例如:m 一 = 11示+ = 2等都不是二m = 1倍。7 .为了准备小勇6年后上大学的学费5000元,他的父母现在 就参加了教育储蓄.下面有两种储蓄方式。(1)直接存一个6年期,年利率是;(2)先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是。你认为哪种储蓄方式开始存入的本金比较少?8.解答下列各问题:(1)据北京日报5月16曰报道:北京市人均水资源占 有300立方米,仅是全国人均占有量的"世界人均占有量的 ,问全国人均水资源占有量是多少立方米世界人均水资源 占有量是多少立方米(2)北京市一年漏掉的水相当于新建一个自来水厂,据不 完全统计
7、,全市至少有6x10,个水龙头,2x1(/个抽水马桶漏 水,如果一个关不紧的水龙头,一个月能漏掉a立方米水,一 个漏水马桶,一个月漏掉b立方米水,那么一个月造成的水 流失量至少有多少立方米( 用含a、b的代数式表示)(3)水源透支令人担忧,节约用水迫在眉睫,针对居民用 水浪费现象.北京市将制定居民用水标准,规定三口之家楼房 每月标准用水量,超标部分加价收费.假设不超标部分每立方 米水费元,超标部分每立方米水费元,某住楼房的三口之家某 月用水12立方米,交水费22元,请你通过列方程求出北京 市规定三口之家楼房每月标准用水量是多少立方米?10 .爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为
8、), 3年后能取5405元,他开始存入了多少元?11 .一收割机收割一块麦田,上午收了麦田的25%,下午收 割了剩下麦田的20%,结果还剩6公顷麦田未收割,这块麦 田一共有多少公顷?12 .儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿 子年龄的4倍吗?第七章二元一次方程组一、基本概念(-)二元一次方程组的有关概念1 .二元一次方程的定义:都含有一个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。一般形式为:ax+by=c (a、b、c为常数,且a、b均不为 0)结合一元一次方程,二元一次方程对“元”和“次“作进一步 的理解;“元”与“未知数”相通,几个元是指几个未知数,“
9、次”指 未知数的最高次数二例如:方程 7y-3x=4、-3a+3=4-7b、2m+3n=0、l-s+t=2s 等都 是二元一次方程。2而 6x°二-2y-6、4x+8y=-6z、一二n 等都不是二元一次方 m程。2 .二元一次方程组的定义:把两个二元一次方程合在一起, 就组成了一个二元一次方程组。7。+ 3% = -3a 2b = 1 '“ ,”等都是二元一次方程组。 3s + f = 11*,2x-3y = 5 f7a+ 3。= -3而. C、C .x + z =-8a - 2a = 1元一次方程组。注意:(1)只要两个方程一共含有两个未知数,也是二元一2x = 5 f v
10、 = ?次方程组。如: 一。、一一也是二元一次方程组。 ),=-8 r = -113 .二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方程的左右两边都 相等的两个未知数的值,叫做二元一次方程的解。(2)二元一次方程组的解:使二元一次方程组的两个方程左 右两边的值都相等的两个未知数的值.叫做二元一次方程组的 解。(即是两个方程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符。把方程中两个未知数的值连接起来写。y=2是方程组mx-ny=5的解,求m和n的值。、B两地相距150千米,甲、乙两车分别从A、月两地同时出 发,同向而行,甲车3小时可追上乙车;相向而
11、行,两车小时 相遇,求甲、乙两车的速度。4.一个三位数,各数位上的数字之和为13,十位上的数字比 个位上的数字大2,如果把百位上的数字与个位上的数字对 调,那么所得新数比原来的三位数大99,求这个三位数。.某旅行团从甲地到乙地游览。甲、乙两地相距100公里. 团中的一部分人乘车先行,余下的人步行,先坐车的人到途中 某处下车步行,汽车返回接先步行的那部分人,已知步行时速 是8公里,汽车时速是40公里.问要使大家在下午4:00同时 到达乙地,必须在什么时候出发?例2:方程组ax+by=62的解手为x = 8mx-20y二一224y =10二元方程解的写法的标准形式是:'=:(其中a、b为常
12、 y = b数)(-)二元一次方程组的解法1 .解二元一次方程组的基本思想:“消元",化二元一次方程 组为一元一次方程来解.2 .二元一次方程组的基本解法(1)代入消元法(代入法)定义:通过“代人”消去一个未知数,将方程组转化为一元 一次方程来解的这种解法叫做代人消元法,简称代入法。步骤:选取一个方程,将它写成用一个未知数表示另一 个未知数,记作方程。把代人另一个方程,得一元一次方程。解这个一元一次方程,得一个未知数的值。把这个未知数的值代人,,求出另一个未知数 值,从而得到方程组的解。(2)加减消元法(加减法)定义:通过将两个方程相加(或相减),消去一个未知数, 将方程组转化为一元
13、一次方程来解,这种解法叫加减消元法, 简称加减法。步骤:把两个方程同一个未知数的系数乘以适当的倍 数.使得这两个未知数的绝对值相同。把未知数的绝对值相同的两个方程相加或相减, 得一元一次方程。解这个一元一次方程,得一个未知数的值。把这个未知数的值代人原方程组中系数叫简单的 一个方程.求出另一个未知数值,从而得到方程组的解n注意:正确选用两种基本解二元一次方程组(1)若二元一次方程组中有一个未知数系数的绝对值为 1,适宜用“代入法二(2)用加减法解二元一次方程组.两方程中若有一个未 知数系数的绝对值相等,可直接加减消元;若同一未知数的系 数绝对值不等,则应选一个或两个方程变形,使一个未知数的 系
14、数的绝对值相等.然后再直接用加减法求解;若方程组比较 复杂,应先化简整理,(三)二元一次方程组的应用1 .纯数学上的应用:(1)二元一次方程定义的应用;(2) 方程解的概念的应用;(3)代数中的应用;(4)公式变形 等。2 .实际生活上的应用:(1)调配问题;(2)行程问题; (3)工程问题;(4)利息问题;(5)面积问题等。3 .探索性应用:这类问题与上面的几类问题有联系,但也有 区别,有时是一种没有结论的问题,需要你给出结论并解答。 注意事项:(1)在实际问题中,常会遇到有多个未知量的问题,和一 元一次方程一样,二元一次方程组也是反映现实世界数量之间 相等关系的数学模型之一,要学会将实际问
15、题转化为二元一次 方程组,从而解决一些简单的实际问题,(2)二元一次方程组的解法很多,但它的基本思想都是通 过消元,转化为一元一次方程来解的,最常见的消元方法有代 人法和加减法。一个方程组用什么方程来逐步消元,转化应根 据它的特点灵活选定。(3)通过列方程组来解某些实际问题.应注意检验和正确 作答,检验不仅要检查求得的解是否适合方程组的每一个方 程,更重要的是要考察所得的解答是否符合实际问题的要求。 二、练习1 .求二元一次方程3x+y=10的正整数解,2 .已知 x=l r 2xn - m=5但是由于看错了系数m,而得到的解为求a+b+m ),=1的值;第8章 一元一次不等式一、基本概念(-
16、)不等式的有关概念和性质1 .不等式的定义:用 表示不等关系的式子叫做不等式。常见不等号:>、<、N、W、X。注:">、""不仅表示左右两边不等关系,还明确表示左 右两边的大小;”N”也表示不等,前者表示“不大于”(小 于或等于),后者表示“不小于”(大于或等于),_“片”表示左右 两边不相等例如:方程7y-3x>4、-3如3W4-7a、2ni+3nW0等都是不等 式。而-2y-6、4x+8y=-6z等都不是不等式。2 .不等式解的定义:能使不等式成立的未知数的值,叫做不 等式的解。例如:不等式120<5x中x = 25, 26, 2
17、7,等都是1205x的解,而x = 24, 23, 22, 21则都不是不等式的解。3 .不等式的解集(1)定义:一个不等式的所有解,组成这个不等式解的集 合,简称为这个不等式的解集。(2)求不等式的解集的过程,叫做解不等式。(3)在数轴上表示不等式的解集:没有等号画空心圆圈,有等号画实心圆点。“大于”向右画, “小于”向左画。4 .不等式的基本性质不等式的基本性1:不等式的两边都加上(或戒去)同一个数(或式子),不等号的方向 O即:如果 a > b,那么 a+c > b+c, a-c > b-c ;如果 a<b,那么 a+c <b+c, a_c < b-c
18、.不等式的基本性2:不等式的两边都乘以(或除以)同一个,不等号的方向不变。即:如果 a<b, c>0,那么 ac<bc, a/c <b/c不等式的基本性3:不等式的两边都乘以(或除以)同一个负数.不等号的 O即:如果 a>b, c<0,那么 ac<bc, a/c<b/c()解一元一次不等式1 .一元一次不等式的定义:只含有一个未知数,且含未知数 的式子是整式,未知数的次数是1,像这样的不等式叫做一元 一次不等式,例如:方程 7-3x>4、6xW-2x-6、3xW-2x+150 都是一元一次 不等式。而这些方程5x- 3x+lN0、2x+y
19、< 1 - 3ys二f片5就不是一 X JL元一次不等式。2 .一元一次不等式的解法解一元一次不等式的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化 为lo注意:(1)不等式中有多重括号时,一般应按先去小括号, 再去中括号.最后去大括号的方法去括号,每去一层括号合并 同类项一次,以简便运算。(2) “去分母”指去掉不等式两边各项系数的分母;去分母 时,要求各分母的最小公倍数,去掉分母后,注意添括号。去 分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即 公分母)。不等式的解法与解一元一次方程类似,完全可以把解一元一次 方程的思想照搬过来。(三)一元一次不等式组1 -一
20、元一次不等式组的定义:几个一元一次不等式合起来就 组成一元一次不等式组与二元一次方程组不同的是,这里的“几个”可以两个,也可以 三个,或更多个。2 .一元一次不等式组的解集:不等式组中几个不等式的解集 的公共部分,叫做这个不等式组的解集。3 .一元一次不等式组的解集的确定规律:同“大”取大,同 “小”取小,“大”小“小”大中间找,“大'大“小”小无解了4 .一元一次不等式组的解法:求不等式组的解集的过程,叫做 解不等式组。一般步骤:(1)分别解不等式组中的每个不等式;(2)把每个不等式组的解集在数轴上表示出来;(3)找出各个不等式解集的公共部分;(4)再结合不等式组解集的确定规律,写出
21、不等式组的解 集。(四)一元一次不等式(组)的应用1 -纯数学上的应用:(1)一元一次不等式定义的应用; (2)不等式解集的概念的应用;(3)代数中的应用;2 .实际生活上的应用:(1)调配问题;(2)行程问题; (3)工程问题;(4)利息问题;(5)决策问题等。3 ,探索性应用:这类问题与上面的几类问题有联系,但也有 区别,有时是一种没有结论的问题,需要你给出结论并解答。 二、练习(-)选择题:1、若 a>b 则()A、a - 2<b - 2 B、2a<2b C、22D、 a+5>b+52、不等式;x>-3的解集是(3A、x> - 6 B、x>- 2
22、63、下列结论中,正确的是(A、xCO的解集是x<0C、3x<-5的解集是x>-:)3C、x<- -D、x< -2)B、5>2的解集是D、一三之。的解集是xNO 4、若代数式3x+4的值不大于0,则x的取值范围是()444A、x< B、x« C、x< D、3334 f2x>5工曲 -xN -45、不等组的整数解是()A、-4B、2、3、4 C、3、4 D、46、如果不等式(a-1) x> (a-1)的解集是xl,那么a的 取值范围是()A、aWlB、a>lC、a<lD、 a<0(-)填空题:1、用不等表示:
23、X的3倍大于52、不等式2x-l0的解集是;不等式-2x<10的解集是 3、x-l<2的正整数解是4、在-2 (x+2) <2的两边都除以 时,x+l>-1的依据是不等性质3 o5、由xy得到,ax>ay, a应满足的条件是 O(三)解答题1、解不等式并把它的解集在数轴上表示出来5x -l>8x+3.2、已知y=5-3x试求:当x取何值时,y>o03、解不等式式-宁>-2x十 2Ox 3>0+| 5x+4<3 (x+1) 2产+1、 2万-14.5、(五)应用题1、如果关于X的不等式_攵-X +6 >0正整数解为1, 2, 3,
24、正整 数k应取怎样的值?2、某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每 间住4人,房间不够;每间住5人,有一个房间没有住满5人.问 该宾馆底层有客房多少间?一、基本概念(-)三角形有关概念1 .三角形定义:三角形是由三条不在同一条直线上的线段首 尾顺次连结组成的平面图形,这三条线段就是三角形的边。三 角形专用符号:2 .三角形的顶点、边组成三角形的线段如图中的AB、BC、AC是这个三角形的三边两边的公共点叫三角形的鹿点,(如点A等)三角形顶点只能用 大写字母表示,整个三角形表示为ABC。3 .三角形的内角,外角的概念:(1)内角:每两条边所组成的角叫做三角形的的南,如4BAC 等。
25、每个三角形有三个内角,(2)外角:三角形中内角的一边与另一边的反向延长线所组 成的角叫做三角形的外角,相邻的外角有几个它们之间有什么关系一个三角形共有几个外角?4 .三角形的分类(1)三角形按角分类可分为:锐角三角形(三个角龌锐角)直角三角形(有一个角是直角) 钝角三角形(有一个角是钝角)各类三角形的定义锐角三角形:所有内角都是锐角的三角形叫锐角三角形;直角三角形:有一个内角是直角的三角形叫直角三角形; 钝角三角形:有一个内角是钝角的三角形叫钝角三角形。第九章多边形(2)三角形按边分类可分为:不等边三角形(三条迹I,不相等)(又称斜三角形)牵腰二角/腰和底不相等的等腰三角形(只两边等)守 一
26、%腰和底相等的等腰三角扬(等边三角形)各类三角形的定义不等边三角形:三边互不相等的三角形叫做不等边三角形; 等腰三角形:有两条边相等的三角形叫等腰三角形。相等的两 边叫做等腰三角形的腰。等边三角形;三条边都相等的三角形叫等边三角形(或正三角 形)。5 .三角形的中线、角平分线、高(记住这重要的三线) 三角形的中线:三角形的一个切点与它的对应先点的连线叫三 角形的中线,三角形的角平分线:三角形内角的平分线与对边的交点和这个 的角预点之间的线段叫三角形的角平分线。三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线 及叫三角形的高。注意:一个三角形中三条中线(高、角平分线)之间的位置关系怎 样?
27、三条中线交于一点,三条角平分线交于一点,三条高所在的 直线交于一点一个三角形的三条中线(角平分线)的交点与三角形有怎样 的位置关系?三条中线(角平分线)相交于一点,这一点在三角形内部 直角三角形的三条高,它们有怎样的位置关系钝角三角形 呢直角三角形有一条高在三角形内部,另外两条就是直角三角 形的两条直角边,三条高的交点就是直角三角形的直角顶点, 钝角三角形有一条高在形内,两条高在形外,三条高所在的直 线的交点在形外。以上三线都是线段,(-)三角形外角的性质以及其外角的和1 .三角形外角的性质:(1)三角形的一个外角等开它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角。2 .
28、三角形外角的和。三角形的外角与和它相邻内角有什么关系(互补)(1)三角形外角和的定义:与三角形的每个内角相邻的外角 分别有两个,这两个外角是对顶角,从与每个内角相等的两个 外角中分别取一个相加,得到的和称为三角形的外角和。(2)三角形外角和定理:三角形的外角和是360。(三)三角形的三边关系1 ,三角形三边不等关系定理:三角形的任何两边的和大于第 三边。三角形的任何两边的差小于第 三边。即三角形第三边的取值范围是:I任何两边的差I <第三边 < 任何两边的和以上定理主要用语判断给出一定长度的线段能否构成三角形和 求第三边的取值范围。2 .三角形具有稳定性这就是说三角形的三条边固定,
29、那么三角形的形状和大小 就完全确定了。三角形的这个性质叫做三角形的稳定性。四边 形就不具有这个性质。(四)多边形的内角和与外角和1 ,多边形及其相关概念定义:由n条不在同一直线上的线段首尾顺次连结组成 的平面图形,记为n边形,又称多边形。一个n边形有n个内角,有2n个外角。如果多边形的各边都相等,各内角也都相等.则称为正多 边形,如正三角形、正四边形(正方形)、正五边形等等。对角线:连结多边形不相邻的两个顶点的线段叫做多边形 的对角线。从n边形的一个顶点引对角线,可以弓|(n-3)条,这(n-3) 条对角线把n边形分成(n-2)个三角形。从n边形的所有顶点引对角线的总条数为:竿条。2 .多边形
30、的内角和公式n边形的内角和二(n-2)IgO。3 .多边形的外角和。(1)多边形的外角和定义:从与每个内角相邻的两个外角中 分别敢一个题得到的和称为多边形的外角和,(2)多边形的外角和定理:多边形的外角和等于360。多边形的外角和与多边形的边数无关。(五)用正多边形拼地板1 .用相同的正多边形拼地板:能拼成既不留空燎,又不重叠 的平面图形的关键是围绕一点拼在一起的几个多边形的内角相 加恰好等于360%在正三角形、正方形、正五边形、正六边形、正八边形中能够 拼出完整地面是(n-2)-180°这就是说,当(360。 -)为正整数时即三 为正整数时,用这样的正n边形就可以铺满地面。设正多边
31、形的个数为n,每个内角为则要铺满地面,它们满足下列关系:«n-360°2 .用多种正多边形拼地板铺垫满地面的标志:满足围绕一点的这几个正多边形的一个内 角的和等于360°设正多边形甲的个数为a每个内角为彳 正多边形乙的 个数为叫 每个内角为每 则它们满足下列关系:饱=360。 二、练习1 .下列各组中的数分别表示三条线段的长度,试判断以这些 线段为边是否能组成三角形。(1)3, 5, 2(2)a, b, a+b (a>0, b>0)(3)3, 4, 5(4)m+l, 2m, m+1 (m>0)(5)a+l, 2, a+5(a>0)2 .如图
32、(1), ZBAC = 90°, 41 = 42, AM_LBC, AD_LBE, 那么42 =43 =44,你知道这是为什么?D3 .如图(2), DC平分aABC的外角,与BA的延长线于D,那 么乙BAC>4B,为什么?4 .在下列四组线段中,可以组成三角形的是()1, 2, 31 14, 5, 6 1,-,- 乙 O 15, 72, 90A1组 B.2组 C3组 D.4组 5 .下列四种说法正确的个数是()个A. 1 B . 2 C. 3一个三角形的三个内角中至多有一个钝角一个三角 形的三个内角中至少有2个锐角 )一个三角形的三个内角中至少有一个直角一个三角形的三个外角中
33、至少有两个钝角6 . ZkABC中,三边长为6、7、x,则x的取值范围是()A . 2<x<12 B . Kx<13 C . 6<x<7 D ,无法确定7 .等腰三角形两边长分别是5和7,则该三角形周长为()A . 17 B . 19C17或19 D .无法确定8 . ABC的三边a、b、c都是正整数,且满足OWaWbWc,如果b = 4,问这样的三角形有多少个?9 .如图依图填空:(1)在AABC中,BC边上的高是()(2)在AAEC中,AE边上的高是 ()(3)在FEC中,EC边上的高是 ()(4) AB = CD = 2cm, AE = 3cm ,则 AAE
34、C 的面积 S=(),CE=()10 .如图,在ABC中,D是BC上一点,二42,43二 44, ZBAC = 63°,求乙DAC 的数。11 .如图(3),在AABC中,乙ABC与4ACB的平分线相交于0.那么4BDC = 9(r+24A,你会说明这个结论正确?12 .已知多边形的一个内角的外角与其它各内角和为600°,求 边数及相应的外角的度数。第十章轴对称一、基本概念(-)轴对称图形的有关概念1 .轴对称图形定义:把一个图形沿着某条直线对折,对折的 两部分是完全重合的,这样的图形称为轴对称图形,这条直线 叫做这个图形的脑敏,常见的基本轴对称图形:线段、直线、角、等腰三
35、角形、正三 角形、长方形、正方形、等腰梯形、菱形、圆等。注意:轴对称图形是一个图形所具有的特性,不是“两个*图形 的位置。2 .轴对称(即关于某条直线成轴对称)的定义:把一个图形 沿着某一条直线翻折过去,如果它能够与另一个图形重合,那 么就说这两个图形砥外力欤这条直线就是它们的初敏.两 个图形中的对应点(即两图形重合时互相重合的点)叫做对称 点。注意:轴对称是两个图形的空间位置,不是“一个"图形的特 性。3 .轴对称(或关于某条直线成对称的两个图形)的性质:(1)轴对称图形(或关于某条直线成对称的两个图形)沿对称 轴对折后的两部分完全重合,所以它的对应线段(对折后重合 的线段)相等.
36、对应角(对折后重合的角)相等。(2)关于某直线成轴对称的两个图形的大小和形状完全相 同。(3)对称轴垂直平分对称点的连线。4 一轴对称图形与两个图形成轴对称的区别与联系:合,那么这个图形就是轴对称图形。如图(1),如果沿着虚线对折,直线两旁的部分会完全重如图(2),如果沿着虚线折叠,右边的图形会与左边的图 形完全重合,那么就说这两个图形关于虚线这条直线成轴对 称。3.线段的垂直平分线的性质:线段的垂直平分线上的点到这 条线段两个端点的距离相等。(这是点到点的距离.即两点间的距离)(注意结合对称性来理解这个性质)(三)角平分线的性质1 .角是轴对称图形,角平分线所在的直线是它的对称轴。2,角平分线的性质:角平分线上的点到这个角两边的距离相等,(这是点到直线的距离)(四)设计轴对称图案 5个步骤一起来画。10.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省东台市第三教育联盟重点名校2025年初三下学期七校联合交流生物试题含解析
- 吉林工程技术师范学院《亚洲电影文化与艺术》2023-2024学年第一学期期末试卷
- 山西省忻州一中、临汾一中、精英中学2024-2025学年高三下学期一轮质量检测试题数学试题含解析
- 山东省青岛市市南区统考市级名校2025年初三下学期8月开学语文试题含解析
- 南宁理工学院《科技文献检索与写作》2023-2024学年第二学期期末试卷
- 湛江市遂溪县2025届五年级数学第二学期期末调研模拟试题含答案
- 山东省德州市2025届高三下学期统练(4)化学试题含解析
- 云南艺术学院文华学院《级科学道德与学术诚信》2023-2024学年第二学期期末试卷
- 辽阳市白塔区2025年三年级数学第二学期期末联考试题含解析
- 南京机电职业技术学院《工程地震与结构抗震》2023-2024学年第二学期期末试卷
- 雨水泵站机电设备安装工程施工方案52719
- 2025 保健品行业专题报告:保健品蓝帽子九问九答
- 基于树枝振动特性的香榧采摘机设计
- 套装门合同范文大全
- 2025年河南应用技术职业学院单招职业技能测试题库及参考答案
- DB15-T 3863-2025 内蒙古牛肉干生产技术规范
- 2025年中国第三方支付系统市场运行态势及行业发展前景预测报告
- 【道 法】揭开情绪的面纱教学设计 2024-2025学年七年级道德与法治下册
- 电力行业人才培养与投资战略研究
- 患者出院流程办理
- 2024年郑州商贸旅游职业学院高职单招语文历年参考题库含答案解析
评论
0/150
提交评论