版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、15圆锥曲线与方程【学法导航】 圆锥曲线方程这章扩展开的内容比较多,比较繁杂,对学生来说不一定要把所有的结论一一记住,关键是掌握圆锥曲线的概念实质以及直线和圆锥曲线的关系.因此,在复习过程中要注意下述几个问题: (1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键,同时勿忘用定义解题.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论
2、和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程. 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形指的是二次
3、曲线的焦点位置与对称轴的位置;定式根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m0,n0);定量由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用. (6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“
4、曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等.解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.【专题综合】 圆锥曲线是解析几何的核心内容,是中学数学的重点、难点,是高考命题的热点之一,也是高考常见新颖题的板块,各种解题方法在本章得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向1圆锥曲线中最值和范围问题例1(1)(2009辽宁卷理)以知F是
5、双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F(4,0), 于是由双曲线性质|PF|PF|2a4 而|PA|PF|AF|5 两式相加得|PF|PA|9,当且仅当A、P、F三点共线时等号成立.【答案】9例2(2009重庆卷文、理)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 【解析1】因为在中,由正弦定理得则由已知,得,即设点由焦点半径公式,得则记得由椭圆的几何性质知,整理得解得,故椭圆的离心率【解析2】 由解析1知由椭圆的定义知 ,由椭圆的几何性质知所以以下同解析1.【答案】例3(2009四川卷理)
6、已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( )A.2 B.3 C. D. 【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。【解析1】直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。【解析2】如图,由题意可知【答案】A例4 (2009山东卷文)(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有
7、两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.解(1)因为,所以, 即. 当m=0时,方程表示两直线,方程为;当时, 方程表示的是圆当且时,方程表示的是椭圆; 当时,方程表示的是双曲线.(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,要使切线与轨迹E恒有两个交点A,B, 则使=,即,即, 且,要使, 需使,即,所以, 即且, 即恒成立.所以又因为直线为圆心在原点的圆的一条切线, 所以圆的半径为, 所求的圆为.当切
8、线的斜率不存在时,切线为,与交于点或也满足.综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知, 即 ,因为与轨迹E只有一个公共点B1,由(2)知得,即有唯一解则=, 即, 由得, 此时A,B重合为B1(x1,y1)点, 由 中,所以, B1(x1,y1)点在椭圆上,所以,所以,在直角三角形OA1B1中,因为当且仅当时取等号,所以,即当时|A1B1|取得最大值,最大值为1.【命题立意】:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可
9、以通过解方程组法研究有没有交点问题,有几个交点的问题.2.圆锥曲线中的定值定点问题例5(2009北京理)(本小题共14分)已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力()由题意,得,解得,所求双曲线的方程为.()点在圆上,圆在点处的切线方程为,化简得.由及得,切线与双曲线C交于不同的两点A、B,且,且,设A、B两点的坐标分别为,则,且,. 的大小为.【解法2】()同解法1.()点在圆上,
10、圆在点处的切线方程为,化简得.由及得 切线与双曲线C交于不同的两点A、B,且,设A、B两点的坐标分别为,则, 的大小为.(且,从而当时,方程和方程的判别式均大于零). 3.圆锥曲线与其他章节的综合问题例6点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.(I)证明: 点是椭圆与直线的唯一交点; (II)证明:构成等比数列.解:本小题主要考查直线和椭圆的标准方程和参数方程,直线和曲线的几何性质,等比数列等基础知识。考查综合运用知识分析问题、解决问题的能力。本小题满分13分解:(I)(方法一)由得代入椭圆,得.将代入上式,得从而因此,方程组有唯一解,即直线与椭圆有唯一交
11、点P. (方法二)显然P是椭圆与的交点,若Q是椭圆与的交点,代入的方程,得即故P与Q重合。(方法三)在第一象限内,由可得椭圆在点P处的切线斜率切线方程为即。因此,就是椭圆在点P处的切线。w.w.w.k.s.5.u.c.o.m 根据椭圆切线的性质,P是椭圆与直线的唯一交点。(II)的斜率为的斜率为由此得构成等比数列。4.创新性试题例7(2009北京理)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是 ( ) A直线上的所有点都是“点” B直线上仅有有限个点是“点” C直线上的所有点都不是“点” D直线上有无穷多个点(点不是所有的点)是“点”【答案】A【解析】本
12、题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力. 属于创新题型. 本题采作数形结合法易于求解,如图,设,则,消去n,整理得关于x的方程 (1)恒成立,方程(1)恒有实数解,应选A.5.探究型的存在性问题高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.例8(2009全国卷文)(本小题满分12分)已知椭圆C: 的离心率为 ,过右焦点F的直线l与C相交于A、B 两点,当l的斜率为1时,坐标原点O到l的距离为()求a,b
13、的值;()C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理解:()设 当的斜率为1时,其方程为到的距离为 故 , w.w.w.k.s.5.u.c.o.m 由 得 ,=()C上存在点,使得当绕转到某一位置时,有成立。由 ()知C的方程为+=6. 设 () C 成立的充要条件是, 且整理得 故 将 w.w.w.k.s.5.u.c.o.m 于是 , =,
14、 代入解得,此时 于是=, 即 w.w.w.k.s.5.u.c.o.m 因此, 当时, ; 当时, 。()当垂直于轴时,由知,C上不存在点P使成立。综上,C上存在点使成立,此时的方程为.【专题突破】1.椭圆5x2ky25的一个焦点是(0,2),那么k等于( B )(A)1 (B)1 (C) (D) 2. (2008年陕西卷)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为(B )(A) (B) (C)(D) 3. 点是双曲线上的一点,、分别是双曲线的左、右两焦点,则等于( D )4. 抛物线上有一点,它的横坐标是3,它到焦点的距离为5,则抛物线
15、的方程为( )(A) (B) (C) (D) 5. 不论取值何值,直线与曲线总有公共点,则实数的取值范围是( B )(A) (B) (C) (D)6.(2008年浙江)已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则 8 7.(2008上海理科)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为1、2,那么船只已进入该浅水区的判别条件是 h1cot1+ h2
16、cot22a 8.(2008辽宁文科)在平面直角坐标系xOy中,点P到两点(0,)、(0,)的距离之和等于4设点P的轨迹为C()写出C的方程;()设直线y=kx+1与C交于A、B两点,.k为何值时此时|的值是多少?解:()设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦距,长半轴为2的椭圆.它的短半轴 故曲线C的方程为 ()设,其坐标满足 消去y并整理得3=0, 故 若即 则 化简得所以 【点评】本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力. 9、 已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作,垂足为N,求点N的坐标;(3)以M为圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程建设招标设标合同合同条模板样本
- 2024年工程承包商与业主合同范本
- 2024股份制合同协议书写
- 2024年一手房独家代理销售协议
- 2024正规的药品代理合同书
- 2024年化工园区土地租赁协议
- 2024家庭房屋装修合同样本
- 2024车辆抵押的借款合同
- 2024寿山石买卖合同格式
- 2024融资租赁合同特征
- 中兴ZCEA(51-801)项目管理工程师认证考试题库及答案
- 《乡土中国》整本书阅读公开课
- 气排球比赛规则课件
- 人美版小学美术六年级上册1建筑艺术的美课件
- 氧气瓶安全操作技术规程
- 北师大版四年级数学上册《温度》评课稿
- 高二期中家长会ppt
- 2023年05月重庆市渝北区洛碛镇上半年公开招录8名村专职干部笔试历年高频考点试题含答案详解
- 中药材中药饮片采购管理制度201556
- 我国行政环境及其对行政管理的影响-毕业论文
- 汉语拼音教学方法及建议讲解课件
评论
0/150
提交评论