![湿法冶金法从铅银渣中异步回收锌、铅银的试验研究_第1页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/3f8fe09a-02d1-4a0e-ae91-32bc57598242/3f8fe09a-02d1-4a0e-ae91-32bc575982421.gif)
![湿法冶金法从铅银渣中异步回收锌、铅银的试验研究_第2页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/3f8fe09a-02d1-4a0e-ae91-32bc57598242/3f8fe09a-02d1-4a0e-ae91-32bc575982422.gif)
![湿法冶金法从铅银渣中异步回收锌、铅银的试验研究_第3页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/3f8fe09a-02d1-4a0e-ae91-32bc57598242/3f8fe09a-02d1-4a0e-ae91-32bc575982423.gif)
![湿法冶金法从铅银渣中异步回收锌、铅银的试验研究_第4页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/3f8fe09a-02d1-4a0e-ae91-32bc57598242/3f8fe09a-02d1-4a0e-ae91-32bc575982424.gif)
![湿法冶金法从铅银渣中异步回收锌、铅银的试验研究_第5页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/3f8fe09a-02d1-4a0e-ae91-32bc57598242/3f8fe09a-02d1-4a0e-ae91-32bc575982425.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、湿法冶金法从铅银渣中异步回收锌、铅银的试验研究作者:智赢论文网 日期:2016-9-8 11:04:57 点击:3传统的湿法炼锌利用硫化锌和氧化锌,通过焙烧-磨矿-酸浸-除杂-电积工艺回收锌金属1,在湿法炼锌的过程中会产出大量锌冶炼渣,这些锌冶炼渣成分复杂且有价矿物含量较高,特别是高温高酸浸出环节产出的铅银渣。由于湿法炼锌工艺的特点,在冶炼过程中仅对锌等金属进行了回收,而其中绝大部分的铅、银和少量的锌等有价金属都存在于铅银渣中未利用,造成资源浪费2-3,并且大量的堆存会带来一系列的环境问题4-5。湿法炼锌浸出渣处理处置是有色冶炼过程中的一个难题,由于原料差异大,价值及工艺方法不同,产出渣的性质
2、也截然不同6。目前,浸出渣综合回收的方法主要有火法和湿法。火法回收主要以奥斯麦特法、回转窑挥发法、烟化炉挥发法等7。湿法回收主要以酸性浸出和碱性浸出,常见的浸出剂有硫酸、盐酸、硝酸、氨水、碳酸盐、氯盐等8-11。通过对比常规的锌冶炼渣回收方法,从能耗、可操作性以回收成本等方面考虑,利用湿法冶金工艺无疑是最可靠的方法之一12-15。本文以西北某铅银冶炼厂高温高酸环节产出铅银渣为研究对象,提出采用酸性浸出-氯化浸出的异步湿法冶金工艺从铅银渣中分别回收锌和铅银金属,考虑到浸出过程的可操作性、浸出液的后续处理及浸出剂的成本,选用硫酸作为酸性浸剂回收锌,以氯化钠和硫酸作为氯化浸出剂浸出铅银。1
3、;矿石性质试验所用矿样取自西北某铅锌冶炼厂,为湿法炼锌过程中的铅银渣,试样晾晒后利用对辊破碎机进行破碎、筛分、制样。试样的多元素分析见表1,铅物相见表2,锌物相见表3,银物相见表4。表1 铅银渣主要化学分析结果(%,质量分数)Table1 Multi-elementary analysis results of Pb-Ag residue(%,mass fraction)elements Au* Ag* Zn Pb TFe Cucontent 1.52 297 2.68 5.41 8.17 0.16elements CaO MgO SiO2 As S Al2O3content 10.
4、85 0.12 33.77 0.04 12.78 6.79表2 铅物相分析结果(%,质量分数)Table 2 The analysis results of lead phase( %, mass fraction)PhaseLeadinleadoxideLeadinmetalleadLeadinleadsulfideLeadinLeadsulfateLeadinothertypesof leadTotalContent 2.5 0.24 0.34 1.86 0.47 5.41Distribution 46.21 4.44 6.28 34.38 8.69 100.00表2
5、锌物相分析结果(%,质量分数)Table 2 The analysis results of zinc phase( %, mass fraction)Phasezincinzincoxidezincinzincferritezinc inzincsulfidezinc inzincsulfatezinc inothertypesofleadTotalContent 0.46 1.46 0.36 0.23 0.17 2.68Distribution 17.16 54.48 13.43 8.58 6.34 100.00表4 银物相分析结果Table 4 The analysis res
6、ults of silver phase( %, mass fraction)PhaseSilverinsilveroxideSilverinsilversulfideSilverinmetalsilverSilver inInsolublematterSilverinsilicate TotalContent* 32.59 72.04 36.55 127.4 28.42 297Distribution 10.97 24.26 12.31 42.90 9.57 100.00从表1 的化学分析结果可以看出,铅银渣中可供回收的有价金属元素有金、银、铅、锌等金属。表2 表3
7、60;和表4 的物相分析结果表明:锌主要以铁酸锌的形式赋存,含量占54.48%,其他以氧化锌和硫化锌;铅主要以氧化铅、硫酸铅为主,含量高达80%以上,此外还有少量的硫化铅和其他形式赋存的铅;银主要以难溶包裹银和硫化银、金属银的形式赋存,此外还有少量的氧化银。对铅银渣进行X 射线衍射,(XRD)分析扫描电镜(SEM)及能谱(EDS)分析,分析结果见图1 和图2。10 20 30 40 50 60 70 80 90010002000300040005000intensity(counts)Angle (2-Theta deg.)111 11 11 1222222333
8、 33344434444 4444445555 5556661-ZnFe2O42-SiO23-Fe2O34-Zn(Co)SO45-CaSO46-NH4Fe3(SO4)2(OH)67-ZnS7图1 铅银渣XRD 图谱Fig.1. X-ray diffraction pattern of Pb-Ag residue图1和图2的分析结果表明,铅银渣的组成复杂,有价金属矿物有硫酸铅、铁酸锌、金属银等,脉石矿物主要以石英、氧化铁、硫酸钙等。有价金属矿物嵌布较细,大部分的嵌布在10m 左右且部分的金属矿物以细粒级包裹在铁酸锌和脉石矿物中。部分的金属矿物与脉石矿物解离不明显。从
9、铅银渣的矿石性质研究结果可知,铅银渣中有价金属由于其赋存状态的特殊、嵌布粒度较细且铅银金属被其他矿物包裹的特性难以采用常规的浮选等工艺回收。2 试验方法与试剂2.1 试验方法取200g 铅银渣置于500ml 烧杯中,按照试验设定的浸出浓度加入去离子水,在添加试验要求的浓硫酸后将烧杯放置在H04-1 型磁力搅拌器中按照设定的温度和时间进行搅拌浸出锌,待酸性浸出锌试验结束后,过滤烘干,称重后化验计算浸出结果。图2 铅银渣SEM 和EDS 分析图谱Fig.2.SEM and EDS of Pb-Ag residueI -
10、 SEM,a,b,c - EDS;a PbSO4;b Fe2O3;c FeZn2O4;d SiO2(particle.(a) C:11.19%;O:7.63%;Ca:1.72%;S:10.57%;Pb:59.56%;Ba:1.72%; particle.(b) C:14.73%;O:22.09%;Fe:34.70%;Zn:23.73% ;Nb:0.71%; particle. (c) C:14.73%;O:22.09%;Fe:34.70%;Zn:23.73%;Nb:0.71% (d) O:39.86%;Si:56.13%; Au:4.01%)取100g 上述最优条件下的酸性浸出渣,置
11、于500ml 烧杯中,按照试验设定的浸出浓度加入去离子水,在添加试验要求的浓硫酸和氯化钠后将烧杯放置在H04-1 型磁力搅拌器中按照设定的温度和时间进行搅拌浸出铅和银,待氯化浸出锌试验结束后,过滤烘干,称重后化验并计算浸出结果。在浸出过程中,在固定时间内补加一定量的去离子水以保证浸出浓度固定。浸出结果的计算是以浸出渣及铅银渣中铅锌银的含量计算的。2.2 试验试剂试验中所用的硫酸和氯化钠均为分析纯。3 铅锌银浸出基本原理3.1 锌的浸出铅银渣的的锌主要以铁酸锌、硫化锌和氧化锌形式存在,铁酸锌发生的溶解溶液如下:ZnFe2O4+H+=Zn2+Fe3
12、+4H2O (1)根据方程(1)的热力学数据计算16,可知铁酸锌在常温环境下式可以溶解的,但铁酸锌由于其特殊的锌铁尖晶石构造,酸溶活化能为58520J/mol,在65°C 的弱酸环境很难溶解,只有从动力学采取必要的手段:提高酸度,升高浸出温度,才可以提高铁酸锌的溶解度。3.2 铅的浸出铅主要是以硫酸铅和氧化铅的的形式存在。在酸性条件下,氧化铅溶于饱和氯化钠溶液,按照以下的反应进行17:PbO+2NaCl+2H+=PbCl2+2Na+H2O (4)硫酸铅按照以下反应溶解于饱和氯化钠溶液中生成氯化铅:PbSO4+2NaCl=PbCl2+Na2SO4 (5)溶液中的氯化
13、铅与饱和溶液中的氯化钠选厂络合物,反应如下:PbCl2+(n-2)Cl=PbCl2(n-2)(2<="" span="">3.3 银的浸出铅银渣中的银主要是以难溶包裹银、硫化银和少量的金属形式存在。在热酸浸出过程中,包裹物被溶解,内部的银才可以与氯化浸出剂接触到从而被溶解浸出。硫化银在有氧化剂Fe3+存在的酸性环境中,硫化银会被氧化,银离子加入溶液并与溶液中的氯离子络合物,生产络合物,反应如下19:Ag2S+2Fe3+2mCl=2AgClm(m-1)+2Fe2+S0(1<="" span="&qu
14、ot;>单质银在酸性溶液中,当有大量的Fe3+存在时,且体系中Fe3+/Fe2+>2.0×10-10 时单质银被溶解加入到溶液中:Ag+ Fe3+4Cl=AgCl43+Fe2+ (8)上述方程的热力学数据表明,铅银渣中存在的三种含银矿物能够被有效的溶解9,从而达到浸出目的。4 结果与讨论4.1 酸性浸出锌试验4.1.1 初酸浓度对锌浸出率的影响由锌浸出原理可以,提高锌的浸出率就是要提高铅银渣中铁酸锌的浸出率,而铁酸锌的溶解必须在强酸高温环境中,因此以硫酸作为锌浸出剂,试验在浸出温度分别为60°C、70°C、80&
15、#176;C 和90°C,浸出时间80min,浸出浓度200g/L 的条件下,考察了初酸浓度从100-220g/L范围内变化对锌浸出率的影响。试验结果见图3。100 120 140 160 180 200 22020406080100Leaching rate of Zn/%Initial acid concentration/( g/L)60Co70Co80Co90Co图3初始酸度对锌浸出率的影响Fig.3.Effect of initial acid concentration on the leachingrate of Zn从图3 的试验结果可知
16、,不同温度下初始酸度对锌浸出率结果差异较大。在浸出温度为60°C 情况下,增加初始酸浓度,锌的浸出率增幅很小。当提高浸出温度,随着初始酸度的增加,锌的浸出率也呈现出增加的趋势。在浸出温度80°C 和90°C 的条件下,当初始酸度超过200g/L,锌的浸出率变化都不再明显。分析结果表明在低温条件下,铁酸锌的溶解度较小,锌的浸出率也低,增加体系温度和初始酸度后,铁酸锌的溶解度提高,锌的浸出也就相应的增加,浸出结果与方程(1)的热力学分析结果相吻合16。在酸性浸出锌过程中,应该在较高的温度环境中,选择初酸浓度以200g/L 浸出锌
17、为宜。4.1.2 浸出浓度(固液比)对锌浸出率的影响初始酸度为200g/L,浸出时间100min,在浸出温度分别为70°C、80°C 和90°C 的条件下,研究了浸出浓度在100-300g/L 范围内变化对锌浸出率的影响。试验结果见图4。100 150 200 250 30020406080100Leaching rate of Zn/%Leaching concentration/( g/L)70Co80Co90Co图4 浸出浓度对锌浸出率的影响Fig.4.Effect of leaching concentra
18、tion on the leaching rateof Zn结果表明,在三种不同温度体系下锌的浸出率曲线都呈现出同一特征,锌的浸出率随着浸出浓度的增加而降低,这一浸出特点在高温体系下尤为明显。分析试验数据可知,在温度为80°C 和90°C 浸出体系下,当浸出浓度低于200g/L 时,锌的浸出率分别达到87.84%和91.23%,而浸出浓度超过200g/L 时,锌的浸出率急剧下降,原因是在酸性浸出体系中,较低的浸出浓度更有利于浸出剂与物料之间的反应。从动力学角度来讲,低的浸出浓度更有利于反应向右进行20-21。因此,在酸性浸出锌时,高温
19、体系下的浸出浓度以200g/L 为宜。4.1.3 浸出时间对锌浸出率的影响浸出浓度为200g/L,初酸浓度为200g/L 的条件下,在70°C、80°C 和90°C 三种温度体系下,考察了浸出时间在20-120min范围变化,对锌浸出率的影响。试验结果见图5。图5 浸出时间对锌浸出率的影响Fig.5.Effect of leaching timeon the leaching rate of Zn结果显示,在三种不同温度体系下锌的浸出率都是随着时间的增加而提高的。在90°C 的温度体系
20、下,经过80min 的浸出,锌的浸出率就可以达到91%以上,再增加浸出时间,锌的浸出率变化不明显;而在80°C 的温度体系下,80min 后锌的浸出率仅有87.25%,经过120min 的浸出,锌的浸出率也可以达到91%以上;在70°C 的温度体系下,经过120min 的浸出,锌的浸出率也仅有71.76%。随着浸出时间的增加,铅银渣中的氧化铁被进一步的溶解,浸出液中的Fe3+浓度提高,根据方程(3),少量的难以溶解的硫化锌溶解,从而提高了锌的浸出率21-22。分析试验结果可知,在相同的初始酸度条件下,在较高的温度环
21、境中,较短的时间内锌的浸出率就可以达到最高值,因此,在酸性浸出锌的过程中,选择90°C 的温度体系下,浸出80min 为宜。4.2 氯化浸出铅银试验4.2.1 氯化钠浓度对铅银浸出率的影响在浸出时间90min,浸出温度80°C,硫酸用量40g/L,浸出浓度在250g/L 的条件下,试验研究了氯化钠浓度在100g/L-350g/L范围内变化对铅银浸出结果的影响。试验结果见图6。100 150 200 250 300 35020406080100PbAgLeaching rate of Pb and Ag/%Sodium chl
22、oride concentration/g/L图6 浸出时间对铅和银浸出率的影响Fig.6.Effect of sodium chloride concentration on theleaching rate of Pb and Ag从图6 的试验结果可知,氯化钠浓度对铅银浸出率影响十分显著。随着氯化钠浓度的增加,铅银的浸出率都呈现持续增加的趋势,当氯化钠浓度超过300g/L 时,铅银的浸出率变化不再明显。由方程(4)-(8)可知,溶液中氯离子的浓度,决定了铅银的浸出率, 因此在溶液中较高的氯离子浓度是铅银高浸出率的前提17-18。因此选择氯化钠浓度以300g/
23、L 为宜,此时铅银的浸出率分别为90.22%和87.84%。4.2.2 初酸浓度对铅银的浸出率影响从铅银的浸出原理可以自,在酸性条件下,铅银可以很好的溶解于浸出体系中,因此在浸出铅银时,选择廉价易得氯化钠作为氯化浸出剂,硫酸作为助浸剂。在浸出时间90min,浸出温度80°C,氯化钠浓度为300g/L,浸出浓度在250g/L 的条件下,试验研究了初酸浓度在0 -100g/L 范围内变化对铅银浸出结果的影响。试验结果见图7。0 20 40 60 80 10020406080100PbAgLeaching rate of Pb and Ag/%Ini
24、tial acid concentration/g/L图7 浸出时间对铅和银浸出率的影响Fig.7.Effect of initial acid concentration on the leachingrate of Pb and Ag结果表明,当浸出体系中没有添加硫酸时,铅银的浸出率都较低,这主要是因为铅银的在氯化浸出时,都必须在酸性的环境中进行18-20。随这硫酸添加量的增加,铅锌的进率持续提高,当初酸浓度达到60g/L 时,铅银的浸出率分别达到92.25%和87.26%,再提高初酸浓度,铅银的浸出率变化不在明显。因此认为,在氯化浸出时初酸浓度以60g/L为宜。4.2
25、.3 浸出浓度对铅银的浸出率影响在浸出时间90min,浸出温度80°C,氯化钠浓度为300g/L,初酸浓度在60g/t 的条件下,试验研究了浸出浓度在100-300g/L 范围内变化对铅银浸出结果的影响。试验结果表明在氯化浸出体系中,低浸出浓度下更有利于铅银的浸出,因此在氯化浸出铅银时,浸出浓度以200g/L 为宜。4.2.4 浸出时间对铅银的浸出率影响在浸出温度80°C,氯化钠浓度为300g/L,初酸浓度在60g/L,浸出浓度200g/L 为的条件下,试验研究了浸出时间在30-180min范围内变化对铅银浸出结果
26、的影响。试验结果表明在氯化浸出过程中,铅的浸出率在90min 后浸出率已达到93.20%,而银的浸出率在120min 后才达到最大值91.17%,这主要是因为随着浸出时间的增加,铅银渣中的含铁的矿物被溶解,溶液中Fe3+浓度提高,根据方程(7)和(8),Fe3+浓度更有利于银的浸出14,21,在氯化浸出时选择浸出时间为120min 为宜。4.2.5 浸出温度对铅银的浸出率影响在浸出时间120min,浸出浓度200g/L,氯化钠浓度为300g/L,初酸浓度在60g/L 的条件下,试验研究了浸出温度在60-100°C范围内变化对铅银浸出结
27、果的影响。试验结果见图8.60 70 80 90 10020406080100PbAgLeaching rate of Pb and Ag/%Leaching temperature/Co图8 浸出温度对铅和银浸出率的影响Fig.8.Effect of Leaching temperature on the leaching rateof Pb and Ag由图8 的试验结果可知,提高浸出温度更有利于银的浸出。随着浸出温度升高,铅银的浸出率都呈上升趋势,铅浸出率在80°C 后变化不在明显;在温度达到90°C 后银的浸出率变化才趋于缓和
28、,此时铅银的浸出分别达到94.55%和93.23%。这是因为银离子与氯离子在溶液中形成银氯络合物的溶解度,随着温度的升高而增加,从而使银的浸出率增加22。综合考虑,氯化浸出的温度以90°C为宜。4.3 酸性浸出-氯化浸出验证试验综合上述条件试验结果,按照最佳工艺参数进行酸性浸出-氯化浸出验证试验,取200 铅银渣,以浸出时间80min,浸出浓度200g/L,初酸浓度为200g/L,浸出温度90°C 的条件下,进行酸性浸出,待浸出完成后过滤;将酸性浸出滤渣按照氯化钠浓度300g/L,浸出时间120min,浸出浓度200g/L,初酸浓度为60g/L
29、,浸出温度90°C 的条件下,进行氯化浸出。酸性浸出-氯化浸出铅银渣数质量流程图见图9,结果表明,铅银渣经过酸性浸出-氯化浸出后锌、铅和银的浸出率分别为92.15%、94.88%和93.24%,尾渣产率为51.84%,尾渣中含锌0.21%,含铅0.46%,含银38.50g/t,达到了综合回收利用铅银渣的目的。5 结论(1)铅银渣含有较高的铅锌银,通过铅锌银的浸出理论分析表明利用酸性浸出-氯化浸出的异步浸出工艺是可行的。(2)酸性浸出的较优工艺参数为浸出时间80min,浸出浓度200g/L,初酸浓度为200g/L,浸出温度90°C;氯化浸出较优工艺参数为氯
30、化钠浓度300g/L,浸出时间120min,浸出浓度200g/L,初酸浓度60g/L,浸出温度90°C。(3)验证试验结果表明铅银渣经过酸性浸出-氯化浸出后尾渣产率为51.84%,尾渣中含锌0.21%,含铅0.46%,含银38.50g/t,锌、铅和银的浸出率分别为92.15%、94.88%和93.24%。参考文献:1Antrekowitsch, J. Hydrometallurgically recovering zinc from electric arcfurnace dustsJ. Journal of Minerals,2001,53 (12):2628.2 J. Dutri
31、zac, O. Dinardo, The co-precipitation of copper and zinc with leadjarositeJ. Hydrometallurgy,1983 (11): 6178.3 Luo, W., Feng, Q., Ou, L., Zhang, G., Chen, Y.Kinetics of saprolitic lateriteleaching by sulphuric acid at atmospheric pressureJ. Minerals Engineering,2010 ,23 (6): 458462.4 Chuncheng Li,Fe
32、ngchun Xie,YnagMa,Tingting Cai,Haiying Li,ZhiyuanHuang,Gaoqing yuan. Multiple heavy metals extraction and recoveryfrom hazardous electroplating sludge waste via ultrasonically enhancedtwo-stage acid leachingJ. Journal of Hazardous Materials, 2010,178(1):823833.5 Özverdi, A., Erdem, M.Environmen
33、tal risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessmentJ. Hydrometallurgy ,2010,100 (3):103109.6 Li R G.Status and development of lead and zinc smelting process in ChinaJ. China nonferrous metallurgy,2012,6:13-20. (李若贵.我国铅锌冶炼工艺现状及发展J.中国有色冶金,2
34、012,6:13-20)7Liu H P. Processing technology overview zinc leaching slagJ.Yunnanmetallurgy, 2009, 38(4):34-37.(刘红萍.锌浸出渣处理工艺概述J.云南冶金,2009,38(4):34-37)8 Nagib, S., Inoue, K. Recovery of lead and zinc from fly ash generatedfrom municipal incineration plants by means of acid and/or alkalineleachingJ. Hyd
35、rometallurgy,2000,56(3): 269292.9 Turan, M.D., Altundoan, H.S., Tümen, F., Recovery of zinc and leadfrom zinc plant residue. Hydrometallurgy ,2004,75 (1), 169176.10 Julian M. Steer , Anthony J. Griffiths. Investigation of carboxylic acidsand non-aqueous solvents for the selective leaching of zi
36、nc from blastfurnace dust slurryJ. Hydrometallurgy , 2013,140:34-41.12 Turan, M.D., Altundoan, H.S., Tümen, F. Recovery of zinc and leadfrom zinc plant residue. Hydrometallurgy ,2004,75 (1), 169-176.13 Leclerc N,Meux,Lecuire J-M.Hydrometallurgical extraction of zinc ferrites.Hydrometallurgy,200
37、3,70(1-3):175-183.14 J.E.Dutrizac.The leaching of silver sulfide in ferric ion media, Hydrometallurgy,1994,(35) :275-292.15 A. Ruen, A.S. Sunkar, Y.A. Topkaya.Zinc and lead extraction fromÇinkur leach residues by using hydrometallurgical methodJ.Hydrometallurgy, 2008, (93):4550.16 Peng H L,Study on the behavio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工现场施工防化学灾害制度
- 应急物资装备应急预案
- 医疗护理医学培训 吸痰护理技术课件
- DB6103T 87-2025企业简易注销登记服务规程
- XX村电排建设及维护合同书2025
- 个人股权抵押融资合同样本
- 临时促销服务合同
- 中小企业融资合作合同协议
- 京东商城代运营合同模板
- 个人质押贷款合同模板
- 流行文化对青少年价值观的影响研究
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
- 设计质量管理和保证措施及设计质量管理和质量保证措施
- 2024电力系统安全规定
- 小学二年级语文上册阅读理解专项训练20篇(含答案)
- 科技论文图表等规范表达
- 高考写作指导议论文标准语段写作课件32张
- 2021年普通高等学校招生全国英语统一考试模拟演练八省联考解析
- 华能火力发电机组节能降耗技术导则(2023年版)
- 基础知识3500个常用汉字附拼音
- 企业易制毒化学品管理培训
评论
0/150
提交评论