




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、14.3.2 因式分解因式分解 (二(二 )学习目标能说出平方差公式的特点能较熟练地应用平方差公式分解因式重点难点重点应用平方差公式分解因式难点灵活应用平方差公式和提公因式法分解因式 你能将多项式你能将多项式x216 与多项式与多项式m 24n2分解分解因式吗因式吗?这两个多项式有什么共同的特点吗这两个多项式有什么共同的特点吗?(a+b)(ab) = a2b2a2b2 =(a+b)(ab) 两个数的平方差两个数的平方差, ,等于这两个数的和与等于这两个数的和与这两个数的差的积这两个数的差的积. .14.3.2 公式法公式法(1)(1)例例3 分解因式分解因式:(1) 4x2 9 ; (2) (
2、x+p)2 (x+q)2. 分析:分析:在在(1)中,中,4x2 = (2x)2,9=32,4x29 = (2x )2 3 2,即可用平方差公式分解因式,即可用平方差公式分解因式. 在在(2)中,把中,把(x+p)和和 (x+q)各看成一个整体,设各看成一个整体,设x+p=m,x+q=n,则原式化为,则原式化为m2n2.(1)4x2 9 = (2x)2 3 2 = (2x+3)(2x 3).(2)(x+p)2 (x+q) 2= (x+p) +(x+q) (x+p) (x+q)=(2x+p+q)(pq). 例例4 分解因式分解因式: (1)x4y4; (2) a3b ab. 分析分析:(1)x4
3、y4写成写成(x2)2 (y2)2的形式,的形式,这样就可以利用平方差公式进行因式分解了这样就可以利用平方差公式进行因式分解了. (2)a3bab有公因式有公因式ab,应先提出公因式,应先提出公因式,再进一步分解再进一步分解.解解:(1) x4y4 = (x2+y2)(x2y2) = (x2+y2)(x+y)(xy).(2) a3bab=ab(a2 1)=ab(a+1)(a 1).分解因式必须进行到每一个多项式都不能再分解为止. 练习练习 1.下列多项式能否用平方差公式来分下列多项式能否用平方差公式来分解因式解因式?为什么为什么? (1) x2+y2 ; (2) x2y2; 2.分解因式分解因式:(1)25-16x2 (2)9a2b2; 巩固提高(1 1)9 9(m+nm+n)2 2(m mn n)2 2; ; (2 2)2x2x3 38x.8x.技能提升(1 1)()(a+ba+b)2 2c c2 2=a=a2 2+2ab+2ab+b2b2c c2.2.(2 2)a a4 41=1=(a a2 2)2 21=1=(a a2 2+1+1)(a a2 21 1)绿色圃中小学教育网http:/今天你有什么收获今天你有什么收获?你还有什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新2024年计算机二级考试试题及答案
- 提升亲子陪伴质量的试题及答案
- 城市绿地与居民生活质量的关系试题及答案
- 2025年份3月智慧农业补贴资金使用效率监测与评估
- 2024年精细化管理策略试题及答案
- 2024年计算机二级考试复习阶段试题及答案
- 分析能力提升的投资咨询工程师试题及答案
- 2025年-天津市建筑安全员C证考试(专职安全员)题库及答案
- 工业自动化控制技术应用能力提升试题集
- 投资咨询工程师如何管理项目风险试题及答案
- JJG 1204-2025电子计价秤检定规程(试行)
- 2024年计算机二级WPS考试题库(共380题含答案)
- 汉字的奥秘探索
- 《海上风电设备运输规范》
- 2024年江苏省徐州市中考数学真题卷及答案解析
- 2025届云南省民族大学附属中学高三(最后冲刺)数学试卷含解析
- 湖北省七市2025届高三下学期第五次调研考试数学试题含解析
- 2024年太阳能电池片产业海外专利预警分析报告
- 2023河南专升本英语真题及答案
- 河流沿岸护栏安装工程协议
- 前庭阵发症-讲稿
评论
0/150
提交评论