计算机视觉资料_第1页
计算机视觉资料_第2页
计算机视觉资料_第3页
计算机视觉资料_第4页
计算机视觉资料_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。最基本的霍夫变换是从黑白图像中检测直线(线段)。我们先看这样一个问题:设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k-b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x-y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问

2、题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等)对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法:1. 首先,我们初始化一块缓冲区,对应于参数平面,将其所有数据置为0.2. 对于图像上每一前景点,求出参数平面对应的直线,把这直线

3、上的所有点的值都加。3. 最后,找到参数平面上最大点的位置,这个位置就是原图像上直线的参数。上面就是霍夫变换的基本思想。就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p-theta平面上的一条曲线上。其它的还是一样。再看下面一个问题:我们要从一副图像中检测出半径以知的圆形来。

4、这个问题比前一个还要直观。我们可以取和图像平面一样的参数平面,以图像上每一个前景点为圆心,以已知的半径在参数平面上画圆,并把结果进行累加。最后找出参数平面上的峰值点,这个位置就对应了图像上的圆心。在这个问题里,图像平面上的每一点对应到参数平面上的一个圆。把上面的问题改一下,假如我们不知道半径的值,而要找出图像上的圆来。这样,一个办法是把参数平面扩大称为三维空间。就是说,参数空间变为x-y-R三维,对应圆的圆心和半径。图像平面上的每一点就对应于参数空间中每个半径下的一个圆,这实际上是一个圆锥。最后当然还是找参数空间中的峰值点。不过,这个方法显然需要大量的内存,运行速度也会是很大问题。有什么更好的

5、方法么?我们前面假定的图像都是黑白图像(2值图像),实际上这些2值图像多是彩色或灰度图像通过边缘提取来的。我们前面提到过,图像边缘除了位置信息,还有方向信息也很重要,这里就用上了。根据圆的性质,圆的半径一定在垂直于圆的切线的直线上,也就是说,在圆上任意一点的法线上。这样,解决上面的问题,我们仍采用2维的参数空间,对于图像上的每一前景点,加上它的方向信息,都可以确定出一条直线,圆的圆心就在这条直线上。这样一来,问题就会简单了许多。接下来还有许多类似的问题,如检测出椭圆,正方形,长方形,圆弧等等。这些方法大都类似,关键就是需要熟悉这些几何形状的数学性质。霍夫变换的应用是很广泛的,比如我们要做一个支

6、票识别的任务,假设支票上肯定有一个红颜色的方形印章,我们可以通过霍夫变换来对这个印章进行快速定位,在配合其它手段进行其它处理。霍夫变换由于不受图像旋转的影响,所以很容易的可以用来进行定位。霍夫变换有许多改进方法,一个比较重要的概念是广义霍夫变换,它是针对所有曲线的,用处也很大。就是针对直线的霍夫变换也有很多改进算法,比如前面的方法我们没有考虑图像上的这一直线上的点是否连续的问题,这些都要随着应用的不同而有优化的方法。Gray-level Co-occurrence Matrix(灰度共生矩阵)发表于655 天前  科研  评论数 1  被围观&

7、#160;2175 次+共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。它是定义一组纹理特征的基础。     一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。设f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为P(i,j)=#(x1,y1),(x2,y2)M×Nf(x1,y1)=i,f(x2,y

8、2)=j其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,)。纹理特征提取的一种有效方法是以灰度级的空间相关矩阵即共生矩阵为基础的7,因为图像中相距(x,y)的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阵来表示。若将图像的灰度级定为N级,那么共生矩阵为N×N矩阵,可表示为M(x,y)(h,k),其中位于(h,k)的元素mhk的值表示一个灰度为h而另一个灰度为k的两个相距为(x,y)的像素对出现的次数。对粗纹理的区域,其灰度共生矩阵的m

9、hk值较集中于主对角线附近。因为对于粗纹理,像素对趋于具有相同的灰度。而对于细纹理的区域,其灰度共生矩阵中的mhk值则散布在各处。    为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种:(1)能量: 是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。(2)对比度: ,其中 。反映了图像的清晰度和纹理沟纹深浅的

10、程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。灰度公生矩阵中远离对角线的元素值越大,CON越大。(3)相关:它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。如果图像中有水平方向纹理,则水平方向矩阵的COR大于其余矩阵的COR值。(4)熵: 是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元

11、素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。(5)逆差距: 反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。其它参数:中值<Mean>协方差<Variance>同质性/逆差距<Homogeneity>反差<Contrast>差异性<Dissimilarity>熵<Entropy>二阶距<Angular Second Moment>自相关<Correlation>当图像的局部有较小的方差时,则灰度值占有支配地位,当图像的局部

12、有较大的方差时,则纹理占有支配地位。纹理是和局部灰度及其空间组织相联系的,纹理在识别感兴趣的目标和地区中有着非常重要的作用。灰度共生矩阵表示了灰度的空间依赖性,它表示了在一种纹理模式下的像素灰度的空间关系。它的弱点是没有完全抓住局部灰度的图形特点,因此对于较大的局部,此方法的效果不太理想。灰度共生矩阵为方阵,维数等于图像的灰度级。灰度共生矩阵中的元素(i,j)的值表示了在图像中其中一个像素的灰度值为i,另一个像素的灰度值为j,并且相邻距离为d,方向为A的这样两个像素出现的次数。在实际应用中A一般选择为0°、45°、90°、135°。一般来说灰度图像的灰度

13、级为256,在计算由灰度共生矩阵推导出的纹理特征时,要求图像的灰度级远小于256,主要是因为矩阵维数较大而窗口的尺寸较小则灰度共生矩阵不能很好表示纹理,如要能够很好表示纹理则要求窗口尺寸较大,这样使计算量大大增加,而且当窗口尺寸较大时对于每类的边界区域误识率较大。所以在计算灰度共生矩阵之前需要对图像进行直方图规定化,以减小图像的灰度级,一般规定化后的图像的灰度级为8或16。由灰度共生矩阵能够导出许多纹理特征,本文计算了14种灰度共生矩阵特征,分别为纹理二阶距、纹理熵、纹理对比度、纹理均匀性、纹理相关、逆差分矩、最大概率、纹理方差、共生和均值、共生和方差、共生和熵、共生差均值、共生差方差、共生差

14、熵。由灰度共生矩阵能够导出许多纹理特征,计算了14种灰度共生矩阵特征,分别为纹理二阶距、纹理熵、纹理对比度、纹理均匀性、纹理相关、逆差分矩、最大概率、纹理方差、共生和均值、共生和方差、共生和熵、共生差均值、共生差方差、共生差熵。目前,人们对遥感影像上的纹理特征的含义理解不尽相同,纹理有时被称为结构、影纹和纹形等。Pickett认为纹理为保持一定的特征重复性并且间隔规律可以任意安排的空间结构。HawKins认为6纹理具有三大标志:某种局部序列性不断重复、非随机排列和纹理区域内大致为均匀的统一体。LiWang和D. C. He认为7,纹理是纹理基元组成的,纹理基元被认为是表现纹理特征的最小单元,是

15、一个像元在其周围8个方向上的特征反应。纹理特征有时是明显的,以某种基本图形在某一地区有规律的周期性出现,例如:大面积森林覆盖地区的影像构成的纹理为斑点状,沙漠地区的影像构成的纹理为链状、新月状等;而有时纹理特征是不明显的、隐晦的,具有不稳定性。一般来说,前者纹理比较均一,后者纹理比较复杂9。纹理作为一种区域特征,是对于图像各像元之间空间分布的一种描述。由于纹理能充分利用图像信息,无论从理论上或常识出发它都可以成为描述与识别图像的重要依据,与其他图像特征相比,它能更好地兼顾图像宏观性质与细微结构两个方面,因此纹理成为目标识别需要提取的重要特征。提取纹理特征的方法很多,如基于局部统计特性的特征、基

16、于随机场模型的特征、基于空间频率的特征、分形特征等,其中,应用最广泛的是基于灰值共生矩阵的特征10。%*% 图像检索纹理特征%基于共生矩阵纹理特征提取,d=1,=0°,45°,90°,135°共四个矩阵%所用图像灰度级均为256%参考基于颜色空间和纹理特征的图像检索%function : T=Texture(Image)%Image : 输入图像数据%T : 返回八维纹理特征行向量%*function T = Texture(path)Image = imread(path);% M,N,O = size(Image);M = 256;N = 256;i

17、f isrgb(Image)%判断是否是RGBGray=rgb2gray(Image);end%-%1.将各颜色分量转化为灰度%-%Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3)%-%2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级%-for i = 1:Mfor j = 1:Nfor n = 1:256/16if (n-1)*16<=Gray(i,j)&Gray(i,j)<=(n-1)*16+15Gray(i,j) = n-1;endendendend%-%3.计算四个共

18、生矩阵P,取距离为1,角度分别为0,45,90,135%-P = zeros(16,16,4);for m = 1:16for n = 1:16for i = 1:Mfor j = 1:Nif j<n&gray(i,j)=m-1&gray(i,j+1)=n-1 P(m,n,1) = P(m,n,1)+1;P(n,m,1) = P(m,n,1);endif i>1&j<n&gray(i,j)=m-1&gray(i-1,j+1)=n-1 P(m,n,2) = P(m,n,2)+1;P(n,m,2) = P(m,n,2);

19、endif i<m&gray(i,j)=m-1&gray(i+1,j)=n-1 P(m,n,3) = P(m,n,3)+1;P(n,m,3) = P(m,n,3);endif i<m&j<n&gray(i,j)=m-1&gray(i+1,j+1)=n-1 P(m,n,4) = P(m,n,4)+1;P(n,m,4) = P(m,n,4);endendendif m=nP(m,n,:) = P(m,n,:)*2;endendend</m&j<n&gray(i,j)=m-1&gray(

20、i+1,j+1)=n-1</m&gray(i,j)=m-1&gray(i+1,j)=n-1</n&gray(i,j)=m-1&gray(i-1,j+1)=n-1</n&gray(i,j)=m-1&gray(i,j+1)=n-1%-% 对共生矩阵归一化%-for n = 1:4P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n);end%-%4.对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数%-H = zeros(1,4);I = H;Ux = H; Uy = H;deltaX= H; deltaY = H;

21、C =H;for n = 1:4E(n) = sum(sum(P(:,:,n).2); %能量for i = 1:16for j = 1:16if P(i,j,n)=0H(n) = -P(i,j,n)*log(P(i,j,n)+H(n); %熵endI(n) = (i-j)2*P(i,j,n)+I(n); %惯性矩Ux(n) = i*P(i,j,n)+Ux(n); %相关性中xUy(n) = j*P(i,j,n)+Uy(n); %相关性中yendendendfor n = 1:4for i = 1:16for j = 1:16deltaX(n) = (i-Ux(n)2*P(i,j,n)+del

22、taX(n); %相关性中xdeltaY(n) = (j-Uy(n)2*P(i,j,n)+deltaY(n); %相关性中yC(n) = i*j*P(i,j,n)+C(n);endendC(n) = (C(n)-Ux(n)*Uy(n)/deltaX(n)/deltaY(n); %相关性end%-%求能量、熵、惯性矩、相关的均值和标准差作为最终8维纹理特征%-T(1) = mean(E); T(2) = sqrt(cov(E);T(3) = mean(H); T(4) = sqrt(cov(H);T(5) = mean(I); T(6) = sqrt(cov(I);T(7) = mean(C);

23、 T(8) = sqrt(cov(C);BRDF(Bidirectional Reflectance Distribution Function,即双向反射分布函数)  定义公式1光线照到一个物体,首先产生了反射,吸收和透射,所以BRDF的关键因素即为多少光被反射、吸收和透射(折射)了多少,是怎样变化的。这时的反射多为漫反射。而要知道这些光线反射透射的变化就需要清楚三样东西,物体的表面材质、光线的波长(即它是什么样的光,是可见太阳光,节能灯光还是紫外线)和观察者与物体之间的位置关系。三维世界角度可以类似是球体的,光线角度除了纵向180°的变化,还有横向360的不同

24、发散方向。会有相应的入射光,反射光,入射角和反射角,它们在物体表面的法平面和切平面上的关系成为了BRDF的关键参数。由于人类眼睛对光的特殊敏感性,我们之所以能看到物体都是通过光线在物体上的发射和转移实现的。而双向反射分布这样的函数表示可以更好地描述光线在物体上的变化,反射光线同时发向分布在法线两边的观察者和光源两个方向,从而使人在计算机等模拟环境下,视觉上可以看到更好的物体模拟效果,仿佛真实的物体存在。1.几何意义 最初的BRDF的定义是爱德华 尼哥蒂姆约于1965提出的。现代的定义是:  更详细的公式2Lr(即上式的Lo)代表延o发射出去的光能(即辐射增量),Ei代表延i

25、入射的光能(即辐射度),i是i和物体入射点上平面法线之间的夹角。2.物理意义双向反射率分布函数(BRDF)的物理意义是:来自方向地表辐照度的微增量与其所引起的方向上反射辐射亮度增量之间的比值。1、SIFT特征的定义SIFT特征(Scale-invariant feature transform,尺度不变特征转换)是一种电脑视觉的算法,用来侦测与描述影像中的局部性特征。它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。此算法由 David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。此算法有其专利,专利拥有者为英属哥伦比亚大学。局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点,而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论