车辆工程专业资料翻译_第1页
车辆工程专业资料翻译_第2页
车辆工程专业资料翻译_第3页
车辆工程专业资料翻译_第4页
车辆工程专业资料翻译_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、现代的风洞不仅用来确定空气阻力及其系数,也用做声学探测。对于乘用车日渐上升的噪声舒适性需求,这就要求优化和测试。在一个所谓的气动-声学风洞中,挑战从而在于降低环境噪声水平到一个这样的水平,这个水平是对于车辆实际的噪声测量不能被风洞自己的服务噪声影响到一个很大的程度。操作的声音已经被降低到60dB。图2-40展现了慕尼黑宝马的风洞。图2-40 宝马汽车公司的空气动力学风洞1-鼓风机 2-热交换器 3-偏转角落 4-整流器 5-屏幕 6-管口 7-转盘和组件规模 8-滚筒试验台 9-捕获喇叭口10-通路11-控制室 12- 污染处理设备2.2.2空气阻力的组成除了已经提到过的理论上的阻力.压力阻力

2、.摩擦阻力在车辆,这里还有.诱导阻力.内循环阻力上述构成了全部的阻力。2.2.2.1压力和诱导阻力除了小的流动分离区域,车辆后端的分离区域的大小主要决定了压力阻力,如图2-41所示,对于相同的迎风面积,车身形状的不同导致空气流动方向的不同。这主要由于在后端分离截面Aa的较大的差别。图2-41 不同车身的空气分离截面车辆上小的分离区域所导致的小的真空区域需要被处理。通过特别的影响车辆后端分离区域的方法,可获得小的真空度,从而得到较低的压力阻力。车身尾端区域边界层的“提取”也会带来有效的阻力下降。诱导阻力是车辆压力阻力的一部分。空气压力在车辆高一点和低一点的面会有区别,这引起了交叉气流的发展(图2

3、-42),而交叉气流是会形成两个大的纵向的漩涡并伴随有车顶的气流(图2-43)。过压真空度图2-42 车身上的诱导气流图2-43 诱导气流所引起的纵向漩涡在它们的最接近处,这种漩涡导致了低压。后部的“死水区”被扩大了,这因此导致了压力阻力的增加。2.2.2.2摩擦阻力车辆表面阻力,在理论上叫做摩擦阻力,对于车身较长的车来说是有重要影响的,如公共汽车。图2-44展现了一辆有高效的空气动力学车身形状的公共汽车的累积起来的阻力,其阻力可以由微不足道的车头部分的阻力,相对较高的车尾部分的阻力和基本由摩擦阻力构成的随着车长稳定增长的车身部分的阻力构成。车长车头全部空气阻力系数Cw的分布车身车尾图2-44

4、 一个经过车身优化的公共汽车的空气动力学阻力的组成(MAN)2.2.2.3内循环阻力空气不仅在车身外围流过,为了降低部件温度和使乘客区通风也通过车身内部。当空气流过冷却系统,发动机舱,车轮罩,乘客区(图2-45),动量损失来自于汽车内部摩擦和湍流以及流动的分离。内循环阻力大约占全部空气阻力的3%11%,因此只贡献了少部分。图2-45 空气流经一辆机动车2.2.2.4斜气流当空气流动与车身呈一个角度时,阻力系数会极大的改变。图2-46展现了对于不同的乘用车偏航角对Cw值的影响。阻力系数CD斜背式车斜背式车掀背式车掀背式车跑车偏航角(度)图2-46 不同乘用车在斜风下的空气阻力系数图2-47展现了

5、对于一辆3.6m(11.8英尺)蓬体形(汉堡蓬体)商用车的相关独立性的关系。因此,对于乘用车和商用车,在有斜侧风时,有相当大的阻力增加。在这个例子中,最大值出现在=25°-35°时。当车辆行驶时,无论如何都要避免偏航角大于15°。系数CD阻力偏航角(度)图2-47 在斜风下对于一辆蓬体商用车的空气动力学阻力随后,在表2-2列出了一些不同种类车辆的Cw值。图2-48展现了近年来CD值的发展。CDA/迎风面积A/表2-2不同种类车辆的CD值CD值车型年图2-48 CD值发展历史2.3坡道阻力坡度P定义为坡高与底长之比,与坡度角的正切值相一致(图2-49)。交通标志通常

6、指的是坡度百分数2-20。P=tan=坡高底长坡度(%)图2-49坡度定义由于道路坡度,根据图2-50汽车重力在质心分解。在一个倾斜的路面上,法向力减少到:图2-50 在倾斜平面上作用在车辆上的力(坡度) (2-31)另外增加了一个路面的水平分力,即有一定量级的下坡的阻力: (2-32)因此对于在坡道上的汽车,需要克服的力量化为向上的阻力Fgr (2-33)其中表2-3展现了德国最大允许的坡度。表2-3允许坡度(来源:RAS-L-1)设计时速 允许坡度(%)道路类型1. 乡村道路区道路农村道路州际高速公路德国联邦高速公路2. 城市道路多车道主要道路服务道路居住区道路3.山路2.4 加速阻力2-

7、21除了在常规行驶条件下由车轮,空气和可能的爬坡阻力所造成的阻力之外,在不稳定的行驶条件下(V常量),惯性力会产生于加速和减速的过程中。当车辆动力传动系统加速时,这些惯性力需要被克服。这些阻力包括:由于汽车质量的不稳定运动所产生平移部分,和由于加速或减速过程中汽车旋转部件所造成的旋转部分2-22。2.4.1平移部分由于平移加速度所造成的力取决于达朗贝尔原理: Fr=-max (2-34) 由于惯性力,一个平移阻力的结果如下(图2-51):(2-35)(2-36)图2-51 作用在汽车上的平移惯性力其中整车整备质量装载质量车的加速度2.4.2旋转部分因为在汽车平移加速时,汽车的旋转部件也加速旋转

8、,一个附加的旋转阻力必需要克服(图2-52)。为了算出这个力,旋转部分的惯性力矩(MOI)被简化到车轴的力矩,与平移加速度的计算类似,我们可得:图2-52 作用在车轮上的旋转惯性力(2-37)其中旋转阻力由下式给出: (2-38)其中旋转部分的惯性力矩简化到车轴;角加速度;车轮滚动半径。从关系 (2-39)和对时间的两次求导,我们得到: (2-40)利用得到下式: (2-41)对于,下列传动系统的惯性力矩需要考虑(图2-53):图2-53 考虑不均匀车速下旋转质量发动机,离合器:特定传动比的i的变速器:(涉及变速器的输入轴)传动轴差异:车轮(主要包括制动鼓或制动盘和车轮轴):当计算车轮惯性力矩

9、时,需要注意的的事实是所有的车轮都必须考虑,不管是前驱,后驱或者是四驱。考虑到变速器的传动比(对于特定的齿轮)和传动轴的变速(对于前驱和后驱车)我们获得了对于齿轮i惯性力矩简化到驱动轴的力矩。原始的和相似系统的动态平衡必须维持。 (2-42)2.4.3加速组件的总结总共的加速阻力是平移阻力和旋转阻力的和,用下列公式表示: (2-43) (2-44) 介绍一个质量系数: (2-45)另外介绍汽车特定的数据,全部的惯性阻力由下列式子给出: (2-46)因为当计算简化的惯性力矩时,传动比的平方是有联系的,质量系数能在一个大的范围内波动。举个例子,像越野汽车和商用车有着很高的履带传动比,比起单纯的车辆

10、平移加速表2-4列出了不同种类的车辆在不同的传动比下的质量系数。档位表2-4 不同档位不同车辆的质量系数履带装置2.5总共的阻力由上述的几个部分推倒出来的单个道路阻力加起来就组成了总共的阻力。这些阻力需要用地面与车轮间的推力去克服。他们可以在不同的车轮半径时驱动力矩作用在车轮上的力来表示: (2-47)通过在同一个图中结合不同成分的阻力,给出了下列特性结果(图2-54):速度V阻力F图2-54 有坡度道路上的道路阻力特定阻力成分的影响取决于车辆和行驶条件。通常可以声明在高速行驶的条件下乘用车的空气阻力因素占了主导因素。在商用车中,然而,这个因素就小了(图2-55)。除了空气阻力,需要考虑的是全部的的道路阻力与车辆的重力有比例关系。由于质量系数所带来的一些细微的差别。联邦高速公路 高速公路 水平速度 城市行驶 高速公路 水平速度= 50mile/h 平均产能 部分丘陵 =50mile/h(80km/h) 利用率 (80km/h)空转速度空气阻力滚动阻力加速和爬坡阻力燃油消耗量份额(%)图2-55 商用车典型道路阻力(来源:载重汽车和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论