![高一数学《21数列的概念与简单表示法(二)》简洁_第1页](http://file3.renrendoc.com/fileroot3/2021-11/10/a9ba7b00-4154-4fa7-950d-c9c9818c0c40/a9ba7b00-4154-4fa7-950d-c9c9818c0c401.gif)
![高一数学《21数列的概念与简单表示法(二)》简洁_第2页](http://file3.renrendoc.com/fileroot3/2021-11/10/a9ba7b00-4154-4fa7-950d-c9c9818c0c40/a9ba7b00-4154-4fa7-950d-c9c9818c0c402.gif)
![高一数学《21数列的概念与简单表示法(二)》简洁_第3页](http://file3.renrendoc.com/fileroot3/2021-11/10/a9ba7b00-4154-4fa7-950d-c9c9818c0c40/a9ba7b00-4154-4fa7-950d-c9c9818c0c403.gif)
![高一数学《21数列的概念与简单表示法(二)》简洁_第4页](http://file3.renrendoc.com/fileroot3/2021-11/10/a9ba7b00-4154-4fa7-950d-c9c9818c0c40/a9ba7b00-4154-4fa7-950d-c9c9818c0c404.gif)
![高一数学《21数列的概念与简单表示法(二)》简洁_第5页](http://file3.renrendoc.com/fileroot3/2021-11/10/a9ba7b00-4154-4fa7-950d-c9c9818c0c40/a9ba7b00-4154-4fa7-950d-c9c9818c0c405.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1数列的概念与数列的概念与简单表示法简单表示法(二二)复习引入复习引入1. 以下四个数中,是数列以下四个数中,是数列n(n1)中的中的一项的是一项的是 ( A )A. 380 B. 39 C. 32 D. 18练习练习.复习引入复习引入1. 以下四个数中,是数列以下四个数中,是数列n (n1)中的中的一项的是一项的是 ( A )A. 380 B. 39 C. 32 D. 18练习练习.复习引入复习引入A. 第第9项项 B. 第第10项项 C. 第第11项项 D. 第第12项项 练习练习.)(24,11,22 ,5,2. 2是是该该数数列列的的,则则设设数数列列为为复习引入复习引入A. 第第
2、9项项 B. 第第10项项 C. 第第11项项 D. 第第12项项 练习练习.)(24,11,22 ,5,2. 2是是该该数数列列的的,则则设设数数列列为为C定义定义 已知数列已知数列an的第一项的第一项(或前几项或前几项),且任一项且任一项an与它的前一项与它的前一项an1(或前几或前几项项)间的关系可以用一个公式来表示,间的关系可以用一个公式来表示,这个公式就叫做这个数列的这个公式就叫做这个数列的递推公式递推公式.,11, 9, 7, 5, 3, 1)1(, 8, 6, 4, 2, 0)2(,81,27, 9, 3)3(, 11 a, 01 a, 31 a21 nnaa21 nnaa13
3、nnaa讲授新课讲授新课, 2523 aa, 221312 aa运用递推公式确定一个数列的通项:运用递推公式确定一个数列的通项:练习练习运用递推公式确定一个数列的通项:运用递推公式确定一个数列的通项:,21,13, 8, 5, 3, 2, 1, 1)2(,11, 8, 5, 2)1(练习练习运用递推公式确定一个数列的通项:运用递推公式确定一个数列的通项:, 21 a,21,13, 8, 5, 3, 2, 1, 1)2(,11, 8, 5, 2)1()2(31 naann练习练习运用递推公式确定一个数列的通项:运用递推公式确定一个数列的通项:, 21 a,21,13, 8, 5, 3, 2, 1
4、, 1)2(, 1, 121 aa,11, 8, 5, 2)1()3(21 naaannn)2(31 naann例例1.已知数列已知数列an的第一项是的第一项是1,以后,以后的各项由公式的各项由公式讲解范例讲解范例:111 nnaa写出这个数列的前五项写出这个数列的前五项.给出,给出,例例1.已知数列已知数列an的第一项是的第一项是1,以后,以后的各项由公式的各项由公式讲解范例讲解范例:111 nnaa写出这个数列的前五项写出这个数列的前五项.给出,给出,.58,35,23, 2, 1小结:小结:则则项项之之和和为为的的前前若若记记数数列列, nnSna 1)( 2)( 11nSnSSannn
5、已知数列已知数列an的前的前n项和:项和:练习练习:, 1)2(;2)1(22 nnSnnSnn求数列求数列an的通项公式的通项公式.讲解范例讲解范例:例例2.已知已知a12,an1an4,求,求an.例例2.已知已知a12,an1an4,求,求an.讲解范例讲解范例:例例3.已知已知a12,an12an,求,求an.课堂小结课堂小结1. 递推公式递推公式的概念的概念;湖南省长沙市一中卫星远程学校课堂小结课堂小结1. 递推公式递推公式的概念的概念;2. 递推公式递推公式与数列的与数列的通项公式通项公式的区别是的区别是:湖南省长沙市一中卫星远程学校课堂小结课堂小结1. 递推公式递推公式的概念的概
6、念;2. 递推公式递推公式与数列的与数列的通项公式通项公式的区别是的区别是:(1)通项公式通项公式反映的是反映的是项与项数之间的关系项与项数之间的关系, 而而递推公式递推公式反映的是反映的是相邻两项相邻两项(或或n项项)之之 间的关系间的关系.湖南省长沙市一中卫星远程学校课堂小结课堂小结1. 递推公式递推公式的概念的概念;2. 递推公式递推公式与数列的与数列的通项公式通项公式的区别是的区别是:(1)通项公式通项公式反映的是反映的是项与项数之间的关系项与项数之间的关系, 而而递推公式递推公式反映的是反映的是相邻两项相邻两项(或或n项项)之之 间的关系间的关系.(2)对于对于通项公式通项公式,只要
7、将公式中的,只要将公式中的n依次取依次取1, 2, 3, 4,即可得到相应的项,而即可得到相应的项,而递推公式递推公式 则要已知首项则要已知首项(或前或前n项项),才可依次求出其,才可依次求出其 他项他项.湖南省长沙市一中卫星远程学校课堂小结课堂小结1. 递推公式递推公式的概念的概念;2. 递推公式递推公式与数列的与数列的通项公式通项公式的区别是的区别是:(1)通项公式通项公式反映的是反映的是项与项数之间的关系项与项数之间的关系, 而而递推公式递推公式反映的是反映的是相邻两项相邻两项(或或n项项)之之 间的关系间的关系.(2)对于对于通项公式通项公式,只要将公式中的,只要将公式中的n依次取依次取1, 2, 3, 4,即可得到相应的项,而即可得到相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代网络教育技术的优势与挑战
- 环境保护技术的创新及其商业模式研究
- 深化绿色能源技术教育的重要性
- 国庆节洋酒活动方案设计
- 充电桩设备安装施工方案
- 15 可亲可敬的家乡人1(说课稿)2024-2025学年统编版道德与法治二年级上册
- many、much、a lot of(说课稿)-2023-2024学年译林版(三起)英语六年级下册
- 11屹立在世界的东方 自力更生 扬眉吐气 说课稿-2023-2024学年道德与法治五年级下册统编版
- 2024-2025学年高中历史 专题六 穆罕默德 阿里改革 一 亟待拯救的文明古国(1)教学说课稿 人民版选修1001
- 2023九年级数学上册 第二十一章 一元二次方程21.3 实际问题与一元二次方程第3课时 实际问题与一元二次方程(3)说课稿(新版)新人教版
- 闪蒸罐计算完整版本
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 完整2024年开工第一课课件
- 货运车辆驾驶员安全培训内容资料完整
- 高一学期述职报告
- 风神汽车4S店安全生产培训课件
- ICU患者的体位转换与床旁运动训练
- 人教版四年级上册竖式计算200题及答案
- 建设工程工作总结报告
- 脾破裂术后健康宣教课件
- 三废环保管理培训
评论
0/150
提交评论