管理运筹学课后习题_第1页
管理运筹学课后习题_第2页
管理运筹学课后习题_第3页
管理运筹学课后习题_第4页
管理运筹学课后习题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章 思考题、主要概念及内容1、了解运筹学的分支,运筹学产生的背景、研究的内容和意义。2、了解运筹学在工商管理中的应用。3、体会管理运筹学使用相应的计算机软件,注重学以致用的原那么。第二章思考题、主要概念及内容图解法、图解法的灵敏度分析复习题1. 考虑下面的线性规划问题:max z=2x1+3x2;约束条件:x1+2x26,5x1+3x215,x1,x20(1) 画出其可行域(2) 当z=6时,画出等值线2x1+3x2=6(3) 用图解法求出其最优解以及最优目标函数值2. 用图解法求解以下线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解(1) min f=6x1+4

2、x2;约束条件:2x1+x21,3x1+4x23,x1,x20(2) max z=4x1+8x2;约束条件:2x1+2x210,-x1+x28,x1,x20(3) max z=3x1-2x2;约束条件:x1+x21,2x1+2x24,x1,x20(4) max z=3x1+9x2;约束条件:x1+3x222,-x1+x24,x26,2x1-5x20,x1,x203. 将下述线性规划问题化成标准形式:(1) max f=3x1+2x2;约束条件:9x1+2x230,3x1+2x213,2x1+2x29,x1,x20(2) min f=4x1+6x2;约束条件:3x1-x26,x1+2x210,7

3、x1-6x2=4,x1,x20(3) min f=-x1-2x2;约束条件:3x1+5x270,-2x1-5x2=50,-3x1+2x230,x10,-x2(提示:可以令x1=-x1,这样可得x10同样可以令x2-x2=x2,其中x2,x20可见当x2x2时,x20;当x2x2时,x20,即-x2这样原线性规划问题可以化为含有决策变量x1,x2,x2的线性规划问题,这里决策变量x1,x2,x20)4. 考虑下面的线性规划问题:min f=11x1+8x2;约束条件:10x1+2x220,3x1+3x218,4x1+9x236,x1,x20(1) 用图解法求解(2) 写出此线性规划问题的标准形式

4、(3) 求出此线性规划问题的三个剩余变量的值5. 考虑下面的线性规划问题:max f=2x1+3x2;约束条件:x1+x210,2x1+x24,x1+3x224,2x1+x216,x1,x20(1) 用图解法求解(2) 假定c2值不变,求出使其最优解不变的c1值的变化范围(3) 假定c1值不变,求出使其最优解不变的c2值的变化范围(4) 当c1值从2变为4,c2值不变时,求出新的最优解(5) 当c1值不变,c2值从3变为1时,求出新的最优解(6) 当c1值从2变为25,c2值从3变为25时,其最优解是否变化?为什么?6. 某公司正在制造两种产品,产品和产品,每天的产量分别为30个和120个,利

5、润分别为500元/个和400元/个公司负责制造的副总经理希望了解是否可以通过改变这两种产品的数量而提高公司的利润公司各个车间的加工能力和制造单位产品所需的加工工时如表2-425页所示表2-4(1) 假设生产的全部产品都能销售出去,用图解法确定最优产品组合,即确定使得总利润最大的产品和产品的每天的产量(2) 在(1)所求得的最优产品组合中,在四个车间中哪些车间的能力还有剩余?剩余多少?这在线性规划中称为剩余变量还是松弛变量?(3) 四个车间加工能力的对偶价格各为多少?即四个车间的加工能力分别增加一个加工时数时能给公司带来多少额外的利润?(4) 当产品的利润不变时,产品的利润在什么范围内变化,此最

6、优解不变?当产品的利润不变时,产品的利润在什么范围内变化,此最优解不变?(5) 当产品的利润从500元/个降为450元/个,而产品的利润从400元/个增加为430元/个时,原来的最优产品组合是否还是最优产品组合?如有变化,新的最优产品组合是什么?第三章思考题、主要概念及内容“管理运筹学软件的操作方法“管理运筹学软件的输出信息分析复习题1. 见第二章第7题,设x1为产品每天的产量,x2为产品每天的产量,可以建立下面的线性规划模型:max z=500x1+400x2;约束条件:2x1300,3x2540,2x1+2x2440,1.2x1+1.5x2300,x1,x20使用“管理运筹学软件,得到的计

7、算机解如图3-5)所示根据图3-5答复下面的问题:(1) 最优解即最优产品组合是什么?此时最大目标函数值即最大利润为多少?(2) 哪些车间的加工工时数已使用完?哪些车间的加工工时数还没用完?其松弛变量即没用完的加工工时数为多少?(3) 四个车间的加工工时的对偶价格各为多少?请对此对偶价格的含义予以说明(4) 如果请你在这四个车间中选择一个车间进行加班生产,你会选择哪个车间?为什么?(5) 目标函数中x1的系数c1,即每单位产品的利润值,在什么范围内变化时,最优产品的组合不变?(6) 目标函数中x2的系数c2,即每单位产品的利润值,从400元提高为490元时,最优产品组合变化了没有?为什么?(7

8、) 请解释约束条件中的常数项的上限与下限(8) 第1车间的加工工时数从300增加到400时,总利润能增加多少?这时最优产品的组合变化了没有?(9) 第3车间的加工工时数从440增加到480时,从图3-5中我们能否求得总利润增加的数量?为什么?(10) 当每单位产品的利润从500元降至475元,而每单位产品的利润从400元升至450元时,其最优产品组合(即最优解)是否发生变化?请用百分之一百法那么进行判断(11) 当第1车间的加工工时数从300增加到350,而第3车间的加工工时数从440降到380时,用百分之一百法那么能否判断原来的对偶价格是否发生变化?如不发生变化,请求出其最大利润2. 见第二

9、章第8题(2),仍设xA为购置基金A的数量,xB为购置基金B的数量,建立的线性规划模型如下:max z=5xA+4xB;约束条件:50xA+100xB1 200 000,100xB300 000,xA,xB0使用“管理运筹学软件,求得计算机解如图3-7所示根据图3-7,答复以下问题:(1) 在这个最优解中,购置基金A和基金B的数量各为多少?这时获得的最大利润是多少?这时总的投资风险指数为多少?(2) 图3-7中的松弛/剩余变量的含义是什么?(3) 请对图3-7中的两个对偶价格的含义给予解释(4) 请对图3-7中的目标函数范围中的上、下限的含义给予具体说明,并阐述如何使用这些信息(5) 请对图3

10、-7中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息(6) 当投资总金额从1 200 000元下降到600 000元,而在基金B上至少投资的金额从300 000元增加到600 000元时,其对偶价格是否发生变化?为什么?3. 考虑下面的线性规划问题:min z=16x1+16x2+17x3;约束条件:x1+x330,05x1-x2+6x315,3x1+4x2-x320,x1,x2,x30其计算机求解结果如图3-9所示根据图3-9,答复以下问题:(1) 第二个约束方程的对偶价格是一个负数(为-3622),它的含义是什么?(2) x2的相差值为0703,它的含义是什么?(3) 当

11、目标函数中x1的系数从16降为15,而x2的系数从16升为18时,最优解是否发生变化?(4) 当第一个约束条件的常数项从30减少到15,而第二个约束条件的常数项从15增加到80时,你能断定其对偶价格是否发生变化吗?为什么?第四章思考题、主要概念及内容人力资源的分配问题;生产方案的问题;套裁下料问题;配料问题;投资问题。复习题1、某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为63.5×4 mm的锅炉钢管,每台锅炉需要不同长度的锅炉钢管数量如表4-12所示表4-12库存的原材料的长度只有5 500 mm一种规格,问如何下料,才能使总的用料根数最少?需要多少根原材料?2、某快餐店坐落

12、在一个旅游景点中这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增快餐店主要为旅客提供低价位的快餐效劳该快餐店雇佣了两名正式职工,正式职工每天工作8小时其余工作由临时工来担任,临时工每班工作4个小时在星期六,该快餐店从上午11时开始营业到下午10时关门根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表4-13所示表4-13一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时又知临时工每小时的工资为4元(1) 在满足对职工需求的条件下,如何安排临时工的班次,使得

13、使用临时工的本钱最小?(2) 这时付给临时工的工资总额为多少?一共需要安排多少临时工的班次?请用剩余变量来说明应该安排一些临时工的3小时工作时间的班次,可使得总本钱更小(3) 如果临时工每班工作时间可以是3小时,也可以是4小时,那么应如何安排临时工的班次,使得使用临时工的总本钱最小?这样比(1)能节省多少费用?这时要安排多少临时工班次?答案:2工资总额为320元;一共需要安排80个班次;3此时总本钱为264元;需要安排66个临时班次;3、前进电器厂生产A,B,C三种产品,有关资料如表4-14所示表4-14(1) 在资源限量及市场容量允许的条件下,如何安排生产使获利最多?(2) 说明A,B,C三

14、种产品的市场容量的对偶价格以及材料、台时的对偶价格的含义,并对其进行灵敏度分析如要开拓市场应当首先开拓哪种产品的市场?如要增加资源,那么应在什么价位上增加机器台时数和材料数量?答案:该厂的最大利润为6400元第五章思考题、主要概念及内容单纯形法的根本思路和原理 单纯形法的表格形式 求目标函数值最小的线型规划的问题的单纯形表解法复习题用单纯形法或大M法解以下线性规划问题,并指出问题的解属于哪一类(1) maxz = 3 x1 + 12 x2;约束条件:2 x1 + 2 x2 11,- x1 + x2 8,x1,x2 0(2) min4 x1 + 3 x2;约束条件:2 x1 + 1/2 x2 1

15、0,2 x1 4,4 x1 + 4 x2 32,x1,x2 0(3) max2 x1 + 3 x2;约束条件:8 x1 + 6 x2 24,3 x1 + 6 x2 12,x2 5,x1,x2 0(4) maxz = 2 x1 + x2 + x3;约束条件:4 x1 + 2 x2 + 2 x3 4,2 x1 + 4 x2 20,4 x1 + 8 x2 + 2 x3 16,x1,x2,x3 0第六章思考题、主要概念及内容单纯形表的灵敏度分析 线性规划的对偶问题 对偶规划的根本性质对偶单纯形法复习题 第七章思考题、主要概念及内容运输模型运输问题的计算机求解运输问题的运用运输问题的表上作业法复习题第八

16、章思考题、主要概念及内容整数规划的图解法 整数规划的计算机求解 整数规划的应用 整数规划的分枝定界法复习题1. 有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少。试建立该问题的整数规划数学模型,不用求解2. 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。假设10个井位的代号为S1, S2, S10,相应的钻探费用为C1, C2, C10,并且井位选择方面要满足以下限制条件:或选择S1和S7,或选择钻探S8; 选择了S3或S4就不能选S5,或反过来也一样;在S5,S6,S7,S8中最多只

17、能选两个;试建立这个问题的整数规划模型并求解。3. 某畜产品公司方案在市区的东、西、南、北四区建立销售门市部,拟议中有10个位置 Ai (i1,2,3,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:在东区由A1,A2,A3三个点中至少选择两个;在西区由A4,A5两个点中至少选一个;在南区由A6,A7两个点中至少选一个;在北区由A8,A9,A10三个点中至多项选择两个。Ai各点的设备投资及每年可获利润由于地点不同都是不一样的,预测情况见下表单位:万元所示。但投资总额不能超过820万元,问应选择哪几个销售点,可使年利润为最大?建立上述问题的整数规划模型并求解。第九章思考题、主要

18、概念及内容有优先权的目标规划的图解法 复杂情况下的有优先权的目标规划 加权目标规划复习题 第十章思考题、主要概念及内容根本概念、根本方程与最优化原理 动态规划应用复习题第十一章思考题、主要概念及内容图与网络 最短路问题 最小生成树问题 最大流问题与最小费用最大流问题复习题第十二章思考题、主要概念及内容车间作业方案模型 统筹方法复习题练习p279 习题1在一台车床上要加工7个零件,表12-18p279列出它们的加工时间,请确定其加工顺序,以使各零件在车间里停留的平均时间最短练习p279 习题2有7个零件,先要在钻床上钻孔,然后在磨床加工表12-19p279列出了各个零件的加工时间确定各

19、零件加工顺序,以使总加工时间最短,并画出相应的线条图各台机器的停工时间是多少?第十三章思考题、主要概念及内容经济订购批量存储模型经济生产批量模型允许缺货的经济订货批量模型允许缺货的经济生产批量模型经济订货批量折扣模型需求随记的单一周期的存储模型需求为随机变量的订货批量、在订货点模型需求为随机变量的定期检查存储量模型物料需求方案MRP与准时化生产方式JIT简介复习题1. 某医院每年需要某种药品35600瓶,每次定购费用需要500元,假设每瓶药单价为2.5元,每瓶药的年保管费用为36.5元,设对药品的需求是连续均匀的,且不能缺货,制药厂对定购每次600瓶以上时优惠5,定购1200瓶以上时优惠10,

20、如果当天订货可当天付货,该医院应取什么样的采购策略可满足全年需求。2. 在确定性存贮问题中,记C1为订货费,C2为存贮费,C3为缺货费,R为需求率,设C1、C2和R均为常数,不需要提前订货,且一订货即可全部供货。1请分别写出不允许缺货和允许缺货缺货要补两种条件下最正确批量相应的总费用表达式,并说明允许缺货时的费用不会超过不允许缺货时的费用。2假设R=50箱/月,C1=60元/次,C2=40元/月,允许缺货且缺货要补,C3=40元/箱.周。求最正确订货批量及订货间隔时间。3. 某菜场每天售货量r单位:万斤的经验分布函数为:r : 3.5 3.6 3.7 3.8 3.9 4.0 p : 0.05

21、0.15 0.20 0.30 0.25 0.05 假设每百斤进货价为120元,售出价为150元,假设当天不能售出,那么剩余的菜按每百斤30元处理,求菜场的每天的最正确进货量。第十四章思考题、主要概念及内容排队过程的组成局部 单/多效劳台泊松到达、负指数效劳时间的排队模型 排队系统的经济分析 单效劳台泊松到达、任意效劳时间的排队模型 单效劳台泊松到达、定长效劳时间的排队模型 多效劳台泊松到达、任意的效劳时间、损失制排队模型 单/多效劳台泊松到达、负指数效劳时间、系统容量有限制的排队模型复习题1. 方案在某处开设一个小商店,预计顾客到达为Possion过程,平均每小时到达20人,现考虑两种方案:配

22、备4名售货员,假设每人对顾客效劳时间服从相同的负指数分布,且每人每小时可为10人效劳高薪聘请2名售货员,假设每人对顾客效劳时间服从相同的负指数分布但每人每小时可效劳15人试比拟两种方案的优劣,你会选择哪一个方案,根据你考虑问题的角度说明理由,在求解中可应用下面的数据。2 某效劳生有一部 供顾客使用,假设顾客到达为Possion流,平均每小时到达8人,顾客使用 的时间服从负指数分布,平均需3分钟。求没有人使用 的概率 被使用的概率有2人等待使用 的概率需要使用 的平均人数等待使用 的平均人数每位顾客为打 所耗用的平均时间每位顾客为打 所等待的平均时间在什么条件下,效劳台需增加 以满足顾客的需求3

23、 在修建飞机场时需考虑飞机跑道的条数,设飞机的起飞和降落为Poisson流,起飞或降落占用跑到的时间服从负指数分布,在下面两种情况下给出设计跑道数目的数学模型:不考虑跑道的建设费用,但飞机起飞或降落时每小时占用跑道的费用为a万元,每条跑道的运行和维修费用为b万元;机场的有效利用率不低于65,起飞或者降落占用跑道的时间不超过七小时。4 某购物中心设有一个能容纳100辆轿车的停车场,设轿车的到达为一泊松流,顾客的购物时间服从负指数分布,当轿车到达停车场时,假设停车场已满,那么轿车将不再等待而离去。1此问题可看作何种类型的排队模型?2请解释本问题中的状态概率Pn,队长Ls,排队长Lq,逗留时间Ws和

24、等待时间Wq的实际意义。3如果购物中心的经理希望知道是否需扩大停车场容量,你认为对此可怎样分析?5 某汽车修理站有一个维修工,来站修理的汽车每天以12小时计平均到达8辆,每辆平均修理1小时。汽车到达间隔时间和修理时间均服从指数分布,试求:1在汽车站停留汽车的平均数。2汽车列队等待维修的平均时间。3修理站至少有两辆汽车的可能性。6 某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座网武器。所有武器的类型一样。武器对来犯敌机的射击时间服从1架/分钟的指数分布,敌机来犯服从2架/分钟的泊松流。试估计该防空系统的有效率。7 某修理厂负责4台机器维修,修理每台机器的时间与每台机器连续正常工作的时间均服从指数分布。给出描述这一系统得数学模型;给出在稳态下系统状态概率的求解方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论