




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、选择题1已知函数f(x)sin(>0)的最小正周期为,则该函数的图象()A关于点对称 B关于直线x对称C关于点对称 D关于直线x对称解析 由已知,2,所以f(x)sin,因为f0,所以函数图象关于点中心对称,故选A.答案A 2.要得到函数的图象,只要将函数的图象( )A. 向左平移1个单位 B. 向右平移1个单位C. 向左平移 个单位 D.向右平移 个单位解析 因为,所以将向左平移个单位,故选C.答案 C3若函数f(x)2sin(x),xR(其中0,|)的最小正周期是,且f(0),则()A, B,C2, D2,解析由T,2.由f(0)2sin ,sin ,又|,.答案D4将函数yf(
2、x)·sin x的图象向右平移个单位后,再作关于x轴对称变换,得到函数y12sin2x的图象,则f(x)可以是()Asin x Bcos x C2sin x D2cos x解析运用逆变换方法:作y12sin2xcos 2x的图象关于x轴的对称图象得ycos 2xsin 2的图象,再向左平移个单位得yf(x)·sin xsin 2sin 2x2sin xcos x的图象f(x)2cos x.答案D5电流强度I(安)随时间t(秒)变化的函数IAsin(t)(A>0,>0,0<<)的图象如图所示,则当t秒时,电流强度是()A5安 B5安C5安 D10安解析
3、:由函数图象知A10,.T,100.I10sin(100t)又点在图象上,1010sin ,I10sin .当t时,I10sin 5.答案:A6已知函数f(x)2sin(x),xR,其中0,.若f(x)的最小正周期为6,且当x时,f(x)取得最大值,则()Af(x)在区间2,0上是增函数Bf(x)在区间3,上是增函数Cf(x)在区间3,5上是减函数Df(x)在区间4,6上是减函数解析f(x)的最小正周期为6,当x时,f(x)有最大值,×2k(kZ),2k(kZ),.f(x)2sin,由此函数图象易得,在区间2,0上是增函数,而在区间3,或3,5上均不是单调的,在区间4,6上是单调增函
4、数答案A7设函数f(x)cos x(0),将yf(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则的最小值等于()A. B3 C6 D9解析依题意得,将yf(x)的图象向右平移个单位长度后得到的是fcos cos的图象,故有cos xcos,而cos xcos(kZ),故x2k(kZ),即6k(kZ),0,因此的最小值是6.答案C二、填空题8. 将函数ysin(x)的图象,向右最少平移个单位长度,或向左最少平移个单位长度,所得到的函数图象均关于原点中心对称,则_.解析 因为函数的相邻两对称轴之间距离或相邻两对称点之间距离是函数周期的一半,则有2,故T4,即4,.答案 9已知函数f(x
5、)sin(x)的图象上的两个相邻的最高点和最低点的距离为2,则_.解析:由已知两相邻最高点和最低点的距离为2,而f(x)maxf(x)min2,由勾股定理可得2,T4,.答案:10已知函数f(x)3sin(0)和g(x)2cos(2x)1的图象的对称轴完全相同若x,则f(x)的取值范围是_解析由题意知2,f(x)3sin,当x时,2x,f(x)的取值范围是.答案11在函数f(x)Asin(x)(A0,0)的一个周期内,当x时有最大值,当x时有最小值,若,则函数解析式f(x)_.解析首先易知A,由于x时f(x)有最大值,当x时f(x)有最小值,所以T×2,3.又sin,解得,故f(x)
6、sin.答案sin12设函数ysin(x)的最小正周期为,且其图象关于直线x对称,则在下面四个结论中:图象关于点对称;图象关于点对称;在上是增函数;在上是增函数以上正确结论的编号为_解析ysin(x)最小正周期为,2,又其图象关于直线x对称,2×k(kZ),k,kZ.由,得,ysin.令2xk(kZ),得x(kZ)ysin关于点对称故正确令2k2x2k(kZ),得kxk(kZ)函数ysin的单调递增区间为(kZ)(kZ)正确答案三、解答题13已知函数f(x)sin2x2cos2x.(1)将f(x)的图象向右平移个单位长度,再将周期扩大一倍,得到函数g(x)的图象,求g(x)的解析式;
7、(2)求函数f(x)的最小正周期和单调递增区间解析 (1)依题意f(x)sin2x2·sin2xcos2x12sin1,将f(x)的图象向右平移个单位长度,得到函数f1(x)2sin12sin2x1的图象,该函数的周期为,若将其周期变为2,则得g(x)2sinx1.(2)函数f(x)的最小正周期为T,当2k2x2k(kZ)时,函数单调递增,解得kxk(kZ),函数的单调递增区间为(kZ)14已知函数f(x)2·sincossin(x)(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间0,上的最大值和最小值解析(
8、1)因为f(x)sinsin xcos xsin x22sin,所以f(x)的最小正周期为2.(2)将f(x)的图象向右平移个单位,得到函数g(x)的图象,g(x)f2sin2sin.x0,x,当x,即x时,sin1,g(x)取得最大值2.当x,即x时,sin,g(x)取得最小值1.【点评】 解决三角函数的单调性及最值(值域)问题主要步骤有:第一步:三角函数式的化简,一般化成yAsin(x)h或yAcos(x)h的形式.第二步:根据sin x、cos x的单调性解决问题,将“x”看作一个整体,转化为不等式问题.第三步:根据已知x的范围,确定“x”的范围.第四步:确定最大值或最小值.第五步:明确
9、规范表述结论.15函数f(x)Asin(x)的部分图象如图所示(1)求f(x)的解析式;(2)设g(x)2,求函数g(x)在x上的最大值,并确定此时x的值解析(1)由题图知A2,则4×,.又f2sin2sin0,sin0,0,0,即,f(x)的解析式为f(x)2sin.(2)由(1)可得f2sin2sin,g(x)24×22cos,x,3x,当3x,即x时,g(x)max4.16已知直线y2与函数f(x)2sin2x2sinxcosx1(>0)的图象的两个相邻交点之间的距离为.(1)求f(x)的解析式,并求出f(x)的单调递增区间;(2)将函数f(x)的图象向左平移个
10、单位长度得到函数g(x)的图象,求函数g(x)的最大值及g(x)取得最大值时x的取值集合解析 (1)f(x)2sin2x2sinxcosx11cos2xsin2x12sin,由题意可知函数的最小正周期T(>0),所以1,所以f(x)2sin,令2k2x2k其中kZ,解得kxk,其中kZ,即f(x)的递增区间为,kZ.(2)g(x)f2sin2sin,则g(x)的最大值为2,此时有2sin2,即sin1,即2x2k,其中kZ,解得xk,kZ,所以当g(x)取得最大值时x的取值集合为.热点一 三角函数的图像3.【2013年普通高等学校招生全国统一考试(四川卷)文科】函数的部分图象如图所示,则
11、的值分别是( )(A) (B)(C) (D)4、【2013年普通高等学校招生全国统一考试(四川卷)理科】函数的部分图象如图所示,则的值分别是( )(A) (B)(C) (D)5.【2013年普通高等学校招生全国统一考试(湖北卷)理】将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )A B C D6.【2013年普通高等学校招生全国统一考试(山东卷)理】将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A. B. C. D. 1.【2013年普通高等学校招生全国统一考试(浙江卷)文科】函数的最小正周期和振幅分别是( )A、 B、 C、 D、2.【2013年普通高等学校统一考试试题大纲全国文科】若函数的部分图像如图,则( )(A) (B) (C) (D)【答案】B【解析】由题中图像可知.故选B. 3.【2013年普通高等学校招生全国统一考试(四川卷)文科】函数的部分图象如图所示,则的值分别是( )(A) (B)(C) (D)4、【2013年普通高等学校招生全国统一考试(四川卷)理科】函数的部分图象如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃农业职业技术学院《漆艺工艺实践》2023-2024学年第二学期期末试卷
- 河北医科大学临床学院《企业经济学专题》2023-2024学年第二学期期末试卷
- 湖北文理学院《企业经营模拟》2023-2024学年第二学期期末试卷
- 湖北理工学院《家具设计与制作》2023-2024学年第二学期期末试卷
- 杨凌职业技术学院《航空消费者行为》2023-2024学年第二学期期末试卷
- 青岛电影学院《生化微生物基础》2023-2024学年第二学期期末试卷
- 13《猫》教学设计-2023-2024学年四年级语文下册统编版
- 房主中介合同范本
- 五邑大学《医学信息检索B》2023-2024学年第二学期期末试卷
- 龙岩学院《内外科护理学B(Ⅰ)》2023-2024学年第二学期期末试卷
- 2024年度-银行不良清收技巧培训课件(学员版)
- 《书籍装帧设计》 课件 项目3 书籍装帧整体设计
- 【可行性报告】2023年粮油加工项目可行性研究分析报告
- (西师大版)数学二年级下册“双减”下的堂上作业设计
- 2024年山东省春季高考技能考试汽车专业试题库-上(单选题汇总)
- 2024年湖南高速铁路职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2016-2023年江苏农林职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 狼道的读后感课件
- 2022版高中生物必修二第一章测试题及答案解析
- 【初中语文】《说和做》课件+统编版语文七年级下册
- 机修知识培训教材课件
评论
0/150
提交评论