审敛法PPT学习教案_第1页
审敛法PPT学习教案_第2页
审敛法PPT学习教案_第3页
审敛法PPT学习教案_第4页
审敛法PPT学习教案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1审敛法审敛法若,0nu1nnu定理定理 1. 正项级数1nnu收敛部分和序列nS),2, 1(n有界 .若1nnu收敛 , ,收敛则nS,0nu部分和数列nSnS有界, 故nS1nnu从而又已知故有界.则称为正项级数 .单调递增, 收敛 , 也收敛.证证: “ ”“ ”第1页/共29页,Zn,nnvku 都有设,1nnu1nnv且存在,ZN对一切,Nn 有(1) 若强级数1nnv则弱级数1nnu(2) 若弱级数1nnu则强级数1nnv证证:设对一切和令nSn则有收敛 ,也收敛 ;发散 ,也发散 .分别表示弱级数和强级数的部分和, 则有nnvku是两个正项级数, (常数 k 0 ),因在

2、级数前加、减有限项不改变其敛散性, 故不妨第2页/共29页(1) 若强级数1nnv则有nn lim因此对一切,Zn有nS由定理 1 可知,1nnu则有(2) 若弱级数1nnu,limnnS因此,limnn这说明强级数1nnv也发散 .knSnk也收敛 .发散,收敛,弱级数第3页/共29页pppn131211(常数 p 0)的敛散性. 解解: 1) 若, 1p因为对一切,Zn而调和级数11nn由比较审敛法可知 p 级数11npnn1发散 .发散 ,pn1第4页/共29页, 1p因为当nxn1,11ppxn故nnppxnn1d11nnpxx1d1111) 1(111ppnnp考虑强级数1121)

3、1(1ppnnn的部分和n111) 1(11ppnkkkn故强级数收敛 , 由比较审敛法知 p 级数收敛 .时,1) 1(11pn11111) 1(113121211pppppnn1第5页/共29页若存在,ZN对一切,Nn ,1) 1(nun, ) 1(1)2(pnupn.1收敛则nnu;1发散则nnu第6页/共29页证明级数1) 1(1nnn发散 .证证: 因为2) 1(1) 1(1nnn),2, 1(11nn而级数111nn21kk发散根据比较审敛法可知, 所给级数发散 .第7页/共29页,1nnu1nnv,limlvunnn则有两个级数同时收敛或发散 ;(2) 当 l = 0 ,1收敛时

4、且nnv;1也收敛nnu(3) 当 l = ,1发散时且nnv.1也发散nnu证证: 据极限定义, 0对,ZN存在lnnvu)(l设两正项级数满足(1) 当 0 l 时,时当Nn 第8页/共29页nnnvluvl)()(, l取由定理 2 可知与1nnu1nnv同时收敛或同时发散 ;)(Nn ),()(Nnvlunn利用(3) 当l = 时,ZN存在,时当Nn ,1nnvu即nnvu由定理2可知, 若1nnv发散 , ;1也收敛则nnu(1) 当0 l 时,(2) 当l = 0时,由定理2 知1nnv收敛 , 若.1也发散则nnu第9页/共29页,nunv,limlvunnn是两个正项级数正项

5、级数, (1) 当 时,l0两个级数同时收敛或发散 ;特别取,1pnnv 可得如下结论 :对正项级数,nu,1pl0lnnnlimpn,1pl0发散nu(2) 当 且 收敛时,0lnv(3) 当 且 发散时, lnv也收敛 ;nu也发散 .nu收敛nu第10页/共29页的敛散性. nnn1lim11sinnn的敛散性 .解解: nlim sin1nn11根据比较审敛法的极限形式知.1sin1发散nn例例4. 判别级数1211lnnn解解:nlim221limnnn1根据比较审敛法的极限形式知.11ln12收敛nnnn1sin)1ln(21n21n2n211lnn第11页/共29页nnnuu1l

6、im由设 nu为正项级数, 且,lim1nnnuu则(1) 当1(2) 当1证证: (1),1时当11nnuunnuu)(112)(nu1)(NNnu, 1使取收敛 ,.收敛nu时, 级数收敛 ;或时, 级数发散 .,ZN知存在,时当Nn k)(由比较审敛法可知第12页/共29页,1时或, 0,NuZN必存在, 11nnuu,0limNnnuu因此所以级数发散.Nn 当时nnuu11nuNu1lim1nnnuu说明说明: 当时,级数可能收敛也可能发散.例如例如, , p 级数:11npnnnnuu1limppnnn1)1(1lim1但, 1p级数收敛 ;, 1p级数发散 .从而第13页/共29

7、页 limn)0(11xxnnn的敛散性 .解解: nnnuu1limnxn) 1( 1nxnx根据定理4可知:,10时当 x级数收敛 ;,1时当 x级数发散 ;.1发散级数nn,1时当 x第14页/共29页对任意给定的正数 ,limnnnu设 1nnu为正项级,limnnnu则;,1) 1(级数收敛时当 .,1)2(级数发散时当 证明提示证明提示: ,ZN存在nnu有时当,Nn 即nnnu)()(分别利用上述不等式的左,右部分, 可推出结论正确., )1(1111数, 且第15页/共29页时 , 级数可能收敛也可能发散 .1例如 , p 级数 :11pnnpnnnnu1)(1n,1pnnu

8、但, 1p级数收敛 ;, 1p级数发散 .第16页/共29页11nnn收敛于S ,似代替和 S 时所产生的误差 . 解解: : nnnnnu1n1)(0n由定理5可知该级数收敛 .令,nnSSr则所求误差为21)2(1) 1(10nnnnnr21) 1(1) 1(1nnnn1) 1(1nnnnn) 1(11111n并估计以部分和 Sn 近 第17页/共29页则各项符号正负相间的级数nnuuuu1321) 1(称为交错级数交错级数 .定理定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:则级数; ),2, 1() 11nuunn,0lim)2nnunnnu11) 1(收敛 , 且

9、其和 ,1uS 其余项满足.1nnur,2, 1,0nun设第18页/共29页证证: )()()(21243212nnnuuuuuuS)()()(1222543212nnnuuuuuuuS1u是单调递增有界数列,nS212limuSSnn又)(limlim12212nnnnnuSSnnS2lim故级数收敛于S, 且,1uS :的余项nS0nu2nnSSr)(21nnuu21nnnuur1nu故S第19页/共29页收敛收敛nn1) 1(4131211) 11!1) 1(!41!31!211)21nnnnn10) 1(104103102101)31432收敛上述级数各项取绝对值后所成的级数是否收敛

10、 ?;1) 11nn;!1)21nn.10)31nnn发散收敛收敛 ! ) 1(1 n!1n11 nnnuu1 101 1nnnn10 nn1101 第20页/共29页定义定义: 对任意项级数,1nnu若若原级数收敛, 但取绝对值以后的级数发散, 则称原级111) 1(nnn,! ) 1(1) 1(11nnn1110) 1(nnnn1nnu收敛 ,1nnu数1nnu为条件收敛 .均为绝对收敛.例如例如 :绝对收敛 ;则称原级数条件收敛 .第21页/共29页证证: 设1nnunv),2,1(n根据比较审敛法显然,0nv1nnv收敛,收敛12nnvnnnuvu 2,1nnu1nnu也收敛)(21n

11、nuu 且nv,nu收敛 , 令第22页/共29页.) 1()2(;sin) 1 (1214nnnnennn证证: (1),1sin44nnn而141nn收敛 ,14sinnnn收敛因此14sinnnn绝对收敛 .第23页/共29页(2) 令,2nnenu nnnuu1lim limn12) 1(nennen2211limnnen11e因此12) 1(nnnen12) 1(nnnen收敛,绝对收敛.第24页/共29页其和分别为 *定理定理8. 绝对收敛级数不因改变项的位置而改变其和. 说明说明: 证明参考 P203P206, 这里从略.*定理定理9. ( 绝对收敛级数的乘法 ).S则对所有乘积 jivu1nnw按任意顺序排列得到的级数也绝对收敛,设级数1nnv1nnu与都绝对收敛,S其和为但需注意条件收敛级数不具有这两条性质. 第25页/共29页1. 利用部分和数列的极限判别级数的敛散性2. 利用正项级数审敛法必要条件0limnnu不满足发 散满足比值审敛法 limn1nunu根值审敛法nnnulim1收 敛发 散1不定 比较审敛法用它法判别积分判别法部分和极限1第26页/共29页为收敛级数1nnu设Leibniz判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论