上海六年级第二学期数学知识点_第1页
上海六年级第二学期数学知识点_第2页
上海六年级第二学期数学知识点_第3页
上海六年级第二学期数学知识点_第4页
上海六年级第二学期数学知识点_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、上海六年级第二学期数学知识点 1.相反意义的量   收入与支出; 增加与减少; 上升与下降; 零上与零下; 高于海平面与低于海平面;前进与后退; 盈利与亏损; 任意规定一方为正,则另一方为负. 2.正数与负数   比0大的数叫做正数;ìíî正整数正数正分数   在正数前面加上“一”号的数(小于零的数)叫做负数;ìíî负整数负数负分数   

2、零既不是正数,也不是负数。 3.有理数的概念   ììïïíïïïíîïìïíïîî正整数整数零负整数有理数正分数分数负分数j    ììíïîïïíïìïíïîî正整数正有理数正分数有理数零负整数负

3、有理数负分数k üýþ正数非负数零l 4.数轴的概念与画法   数轴是规定了原点、正方向和单位长度的直线;   数轴画法:一直线 + 三要素 5.数轴的性质   数轴上表示的两个数,右边的数总比左边的数大;   正数都大于零,负数都小于零,正数大于一切负数。 6.相反数   只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0.

4、60;  正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。 7.相反数的几何意义   数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。   8.绝对值的定义(几何意义)   在数轴上把表示数a的点与原点的距离叫做数a的绝对值,即|a。 |a是一个非负数,即: |0a³。 9.绝对值的代数意义(即:求一个数的绝对值的法则)   一个正数的绝对值是它的本身,一个负数的绝

5、对值是它的相反数,0的绝对值是0。(0)|0(0)(0)aaaaaa> ìï=íï-<î 一对互为相反数的两数的绝对值相等,而绝对值相等的两个数可能相等也可能互为相反数; 求一个数的绝对值,应先判断这个数是正数、负数还是零,再根据绝对值的代数意义确定。 10.有理数的大小比较   两个负数,绝对值大的反而小;   对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。   比较两个数的大小,还可

6、以用“作差法”,即:   若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.jkl 11.有理数加法及加法法则   把两个有理数合成一个有理数的运算,叫做有理数的加法。分五种情况:两个正数相加;两个负数相加;两个异号数相加;有理数和零相加;零和零相加。   有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数与零相加,仍

7、得这个数。 注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。 12.有理数加法运算律   加法交换律:abba+=+;  加法结合律:()()abcabc+=+ 运算律有下列规律:互为相反数的两数可以先相加;符号相同的数可以相加;分母相同的数可以先相加;几个数相加能得到整数的可以先相加。 13.有理数的减法法则及运算   法则:减去一个数,等于加上这个数的相反数。   注意:两个“变”字,改变运算符号;改变减数的性质符号(变

8、为相反数),         牢记一个“不变”,被减数与减数的位置不变,即没有交换律。 14.有理数乘法的意义   乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。如: n个a相加等于na´ 15.有理数的乘法法则   两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。   注意:运算步骤:符号绝对值相乘;带分数要化成假分数 

9、;16.有理数乘法法则的推广   几个不为0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。   几个数相乘,若其中有一个0,则积为零 17.有理数的乘法运算律乘法交换律:abba=; 乘法结合律:()()abcabc=; 乘法对加法的分配律:().abcabac+=+ 18.倒数及求法   乘积是1的两个数叫做互为倒数。零无倒数,对于任意数(0)aa¹,它的倒数为1a;   非零

10、整数a的倒数为1a;分数ba的倒数是ab;带分数化为假分数后再求倒数; 19.有理数除法的意义   已知两个因数的积c与其中一个因数a,求另一个因数b的运算。即:cba= 20.有理数的除法法则   除以一个数等于乘这个数的倒数,1(0)ababb¸=;   两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零。 21.有理数的乘方   求相同因数的积的运算叫做乘方。乘方的结果叫幂。  &#

11、160;nnaaaaaa××××=L14243个,a叫底数,n叫做指数,na叫做幂。   有理数幂的符号法则:正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数;0的任何非零次幂都是0. 22.有理数的混合运算   一个算式里含有加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数混合运算。 23.有理数的混合运算顺序   先乘方,再乘除,最后加减; 同级运算,从左到右依次进行; 如有括号先括号(小中

12、大) 第一级运算:加和减;第二级运算:乘和除;第三级运算:乘方和开方 24.科学记数法   一个数写成10na´的形式,其中1|a|<10,n£是正整数,这种记数方法叫做科学记数法.  n的值 = 原数的整数位数  1  25.等式与方程   等式:用等号把两个值相等的量或式子连接起来的式子.   方程:含有未知数的等式. 26. 方程中的项、系数、次数等概念 

13、  项:在方程中,被“+”“”号隔开的每一部分(含这部分前面的“+”“”号在内)称为一项   未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母。   项的次数:在一项中,所有未知数的指数和。   常数项:不含未知数的项。 27.列方程的方法   列方程:为了求未知数,在未知数和已知数之间建立一种等量关系,就是列方程。   列方程步骤:设未知数,找等量关系,列方程。 28.方程的解和解方程

14、60;  使方程的左右两边相等的未知数的值叫做方程的解。   求方程的解的过程叫做解方程。 29.一元一次方程的概念   概念:在一个方程中,只含有一个未知数,且未知数的次数是一次的方程。   最简形式:(0)axba=¹   标准形式:0(0)axba+=¹ 30.等式的基本性质   性质1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式;  &

15、#160;性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。 另外性质:对称性:ab=若则b=a;传递性:abbcac=若且则(等量代换) 31.利用等式的基本性质解一元一次方程   解方程:求方程的解的过程。   步骤:0(0)axbaaxb+=¹®=-(等式性质1),baxbxa=-®=-(等式性质2)   移项法则:方程中任何一项,在改变符号后,从方程的一边移到另一边,这种变形叫移项。 32.列方程解应用题步骤&

16、#160;  审题; 设元; 列方程; 解方程; 检验; 作答。jklmno 33.按比例分配问题   已知两个量之比为:ab,则设这两个量分别为axbx和。 34.利率问题   利息本金×利率×期数   本利和本金+利息本金×(1+利率×期数)   利息税利息×税率   税后利息利息利息税利息×(

17、1税率)   税后本利和本金+税后利息 35.折扣问题   利润额成本价×利润率售价成本价+利润额   新售价原售价×折扣 36.行程问题   路程速度×时间     相遇路程速度和×相遇时间   追及路程速度差×追及时间 37.工程问题   工作效率×工作时间1(工作总量)&#

18、160;38.不等式的概念   用不等号“<”“>”“£”“³”“¹”表示不等关系的式子,叫做不等式。 39.常见的不等号及其含义   “¹”即“不等于”;    “>”即:大于;  “<”即:小于; “£”即:小于或等于;  “³”即:大于或等于 40.不等式的基本性质   不等式的基本性质1:.abambm&g

19、t;Þ±>±   不等式的基本性质2:0;ababmambmmm>>Þ>>且   不等式的基本性质3:0;ababmambmmm><Þ<<且 41.不等式的基本性质与等式的基本性质的关系   相同点:不论是等式还是不等式,都可以在它的两边加上(或减去)同一个数(式子)。   不同点:等式在两边乘以(除以)同一个正数或同一个负数,等式成立; 不等式在两边乘

20、以(除以)同一个正数,方向不变,乘以(除以)同一个负数时,方向一定要改变。 42.不等式的解的定义   能使不等式成立的未知数的值,叫做不等式的解。 43.不等式的解集的定义   一个含有未知数的不等式的解的全体叫做不等式的解集。 44.解不等式   求不等式解集的过程叫做解不等式。   解不等式的依据:不等式的三条性质,特别是不等式的性质3,注意不等号方向的改变。 45.如何用数轴表示不等式的解集   一

21、是确定“界点”:解集包含“界点”则用实心圆点;反之,空心圆圈。   二是确定“方向”:大于向右画,小于向左画。 46.一元一次不等式组的概念   由几个含有同一个未知数的一次不等式组成的不等式组。 47.一元一次不等式组的解集的概念   一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集。   解集的公共部分通常用“数轴”来确定。解集规律:大大取大;小小取小;大小小大中间找;大大小小是无解。 48.不等式组的解法 

22、;  求出不等式组中各个不等式的解集;在数轴上表示各个不等式的解集; 确定各个不等式解集的公共部分即这个不等式组的解集。 49.一元一次不等式组的应用   与列方程解应用题类似,列不等式(组)解应用题,求出的通常是一个量的取值范围。 50.二元一次方程   含有两个未知数的一次方程叫做二元一次方程。 51.二元一次方程的解   二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值。记作:xayb=ìí 二元一

23、次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做。 52.二元一次方程组   方程组中含有两个未知数,且未知数的项的次数都是一次,这样的方程组叫做二元一次方程组。   标准形式:111222axbycaxbyc+=ìí+=î(其中12,aa中至少有一个不为0,12,bb中至少有一个不为0) 53.二元一次方程组的解   在二元一次方程组,使每个方程都适合的解,叫做二元一次方程组的解。   检验一组数是否为二元

24、一次方程组的解的方法:将这组数值分别代入方程组中每个方程,满足所有方程时,这组数值是此方程组的解,否则不是。 54.用代入消元法解二元一次方程组   从方程组中选一个系数较简单的方程,将这个方程中的某个未知数且另一个未知数的式子表示; 将得到的式子代入另一个方程中,从而消去一个未知数,得到一元一次方程; 解这个一元一次方程,求出一个未知数的值; 求出另一个未知数的值。 55.用加减消元法解二元一次方程组   把两个方程的两边分别加减消去一个未知数的方法,叫做加减消元法。 &#

25、160; 步骤:确定要消去的元,并使该元的系数相等或者互为相反数; 把两个方程的两边分别相加或相减,消去一个元,得到一个一元一次方程;  解这个一元一次方程,求出一元的值; 求出另一元的值。 56.三元一次方程组的解法   方程组中含有三个未知数,且含有未知数的项的次数都是一次的方程组叫三元一次方程组   解法:类似二元一次方程组的解法。 57.用一次方程组解应用题的建模策略   利用表格;利用线形示意图;利用圆形示意图;利用柱状图。&

26、#160;  详见解应用题专题。 58.线段大小的比较方法   叠合法:比较两条线段AB、CD的长短,可把它们移到同一条直线上,使一个端点A和C重合,另一端点B和D落在直线上A和C的同侧。 若B与D重合,则ABCD;若D在AB上,则AB>CD;若D在AB延长线上,则AB<CD。   度量法:分别量出每条线段的长度,再比较。 59.线段的性质   两点之间的所有连线中,线段最短。 60.两点之间的距离   

27、联结两点的线段的长度叫做两点之间的距离。 61.两条线段的和、差   两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的和(或差)。 62.线段的倍、分   线段的倍:na(1n>为正整数,a是一条线段)就是求n条线段a相加所得和的意义。         na也可理解为:线段a的n倍。   线段的中点:将一条线段分成两条相等线段的点叫这条线段的中点。 

28、  63.角的概念   角的定义:有公共端点的两条射线组成的图形叫做角;(顶点,边) 一条射线绕着其端点旋转到另一个位置所成的图形。(始边,终边)   角的表示:,1AOBOaÐÐÐР64.方位角   方位角的正方向与地图中一样, 上北下南,左西右东;   处在四个直角平分线上的方向, 分别称为:东南、东北、西南、西北方向;   其他方向要用到“

29、偏”字:北偏东a°, 北偏西b°,南偏东g°,南偏西d°。 65.角的大小比较方法   度量法:用量角器量出角的度数来比较。   叠合法:把一角放在另一个角上,使它们的顶点重合,并将其中一边也重合,并使两个角的另一边都放在这条边的同侧,就可以比较两个角的大小。 66.画相等的角   度量法:对中:将量角器的中心点与角的顶点重合;对线:将量角器的零度刻线与角的一边重合;读数。   尺规法:用直尺与圆规做图。&

30、#160;67.角的和、差、倍的画法   度量法:   尺规作图法: 68.角平分线的概念及画法   概念:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。   画法:用量角器画图:量算画;用直尺与圆规作图 69.余角、补角   余角:若两个角的度数的和是90°,这两个角互为余角,简称互余。其中一个角是另一角的余角;   补角:若两个角的度数和是180&

31、#176;,这两个角互补。其中一个角是另一个角的补角。   性质:同角(或等角)的余角相等;同角(或等角)的补角相等。 70角的度量单位、角的换算及角的分类   角的度量单位:度、分、秒;   角的换算:160',1'60''°=,111',1'''6060æöæö=°=ç;   角的分类:小于90°且大于0°的角

32、叫做锐角;等于90°的角叫直角;大于90°小于180°的角叫做钝角。 71.长方体的元素及特征   元素:长方体六个面,十二条棱,八个顶点;   特征:每个面都是长方形; 十二条棱可分三组,每组中的四条棱长度相等; 六个面分三组,每组中的两个面的形状和大小都相同。 72.平面的概念及表示   平面是平的,无边无沿。用一个平行四边形来表示。   平面的表示:平面ABCD;平面a; 73.长方体的直观图画法   斜二侧画法:画平行四边形ABCD,AB为长方体的长,AD为长方体宽的一半,45DA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论