



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数列部分知识点梳理一数列的概念 1)数列的前项和与通项的公式; 2)数列的分类:递增数列:对于任何,均有.递减数列:对于任何,均有.摆动数列:例如: 常数数列:例如:6,6,6,6,.有界数列:存在正数使.无界数列:对于任何正数,总有项使得.1、 等差数列 1) 通项公式,为首项,为公差。前项和公式或.2) 等差中项:。3) 等差数列的判定方法:定义法:(,是常数)是等差数列;中项法:()是等差数列.4) 等差数列的性质: 数列是等差数列,则数列、(是常数)都是等差数列;在等差数列中,等距离取出若干项也构成一个等差数列,即为等差数列,公差为.;(,是常数);(,是常数,)若,则;若等差数列的前
2、项和,则是等差数列;当项数为,则; 当项数为,则. (7)设是等差数列,则(是常数)是公差为的等差数列; (8)设,则有; (9) 是等差数列的前项和,则; (10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则 为等差数列,公差为; (即)为等差数列,公差; (即)为等差数列,公差为. 2、 等比数列 1) 通项公式:,为首项,为公比 。前项和公式:当时,当时,.2) 等比中项:。;3) 等比数列的判定方法:定义法:(,是常数)是等比数列;中项法:()且是等比数列.4) 等比数列的性质:数列是等比数列,则数列、(是常数)都是等比数列;
3、(2) (3)若,则; (4)若等比数列的前项和,则、是等比数列. (5)设,是等比数列,则也是等比数列。(6)设是等比数列,是等差数列,且则也是等比数列(即等比数列中等距离分离出的子数列仍为等比数列);(7)设是正项等比数列,则是等差数列;(8)设,则有;(9)其他衍生等比数列:若已知等比数列,公比为,前项和为,则为等比数列,公比为;(即)为等比数列,公比为;3、 解题技巧: A、数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。2、错项相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,
4、转化为等比数列求和。3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于数列和(其中等差)。可裂项为:,B、等差数列前项和的最值问题:1、若等差数列的首项,公差,则前项和有最大值。()若已知通项,则最大;()若已知,则当取最靠近的非零自然数时最大;2、若等差数列的首项,公差,则前项和有最小值()若已知通项,则最小;()若已知,则当取最靠近的非零自然数时最小;C、根据递推公式求通项:1、构造法:1°递推关系形如“”,利用待定系数法求解【例题】已知数列中,求数列的通项公式.2°递推关系形如“,两边同除或待定系数法求解【例题】,求数列的通项公式.3°递推已知数列中,关系形如“”,利用待定系数法求解【例题】已知数列中,求数列的通项公式.4°递推关系形如",两边同除以【例题】已知数列中,求数列的通项公式.【例题】数列中,求数列的通项公式.2、 迭代法:a、已知关系式,可利用迭加法或迭代法;【例题】已知数列中,求数列的通项公式 b、已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中家长会教师发言稿 (共六篇)
- 城乡建设领域基础数据标准
- 禁毒安全知识教育主题班会
- 2025届广东省江门市普通高中学业水平选择性考试模拟(三) 历史试卷(含答案)
- 4-新生代发言稿
- 辽沈战役课件
- 2025至2030年中国气压式干法高速复合机行业投资前景及策略咨询研究报告
- 2025至2030年中国气动吸边器行业投资前景及策略咨询研究报告
- 2025至2030年中国横流激光器市场分析及竞争策略研究报告
- 2025至2030年中国楼承板型材行业投资前景及策略咨询研究报告
- 2024年4月27日福建省事业单位《综合基础知识》真题及答案
- 交通运输行业股权分配方案
- 中试平台管理制度
- 入职申请表(完整版)
- 尉克冰《别把我当陌生人》阅读练习及答案(2021年辽宁省沈阳市中考题)
- 升降机安全检测报告书及检测内容
- 水墨中国风清明节日PPT模板
- 人卫版内科学第九章白血病(第4节)
- 建筑节能技术课件
- 环保节能空水冷系统在高压变频器上的应用
- 项目建设全过程管理经典讲义(PPT)
评论
0/150
提交评论