单反相机的基本知识_第1页
单反相机的基本知识_第2页
单反相机的基本知识_第3页
单反相机的基本知识_第4页
单反相机的基本知识_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、单反相机基本知识一:什么叫单反单反即单镜头反光数码相机,构造图如下: 工作原理图如下:二:单反相机的结构导致的优点单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,消除了旁轴平视取景照相机的视差现象,从学习摄影的角度来看,十分有利于直观地取景构图。 由于采用一个成像系统为一个镜头所以协调反应比一般的机子反应快,所以单反机对高速运动的物体拍摄较好(不会因为相机反应迟钝错失佳景)。三:单反相机的图像传感器 图像传感器即感光器件是数码相机的核心部件,与传统相机相比,传统相机使用“胶卷”作为其记录信息

2、的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。1:传感器的种类目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。 结构上:比较CCD和CMOS的结构,ADC(数模转换器)的位置和数量是最大的不同。CCD每曝光一次,在快门关闭后进行像素转移处理,将每一行中每一个像素的电荷信号依序传入“缓冲器”中,由底端的线路引导输出至CCD边缘的放大器进行放大,再串联ADC输出;而CMOS的设计中每个像素旁边都直接连着ADC,电荷信号直接放大并转换成数字

3、信号。造成这种差异的原因在于CCD的特殊工艺可保证数据在传送时不会失真,因此各个像素的数据可汇聚至边缘再进行放大处理;而CMOS工艺的数据在传送距离较长时会产生噪声,因此,必须先放大,再整合各个像素的数据。技术上:CCD存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂而且速度较慢。而CMOS传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单,还能同时处理各单元的图像信息,速度也比CCD快很多。CCD制作技术起步早,技术成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS

4、有一定优势。由于CMOS集成度高,各光电传感元件、电路之间距离很近,相互之间的光、电、磁干扰较严重,噪声对图像质量影响很大,使CMOS很长一段时间无法投入实用。近几年,随着CMOS电路消噪技术的不断发展,CMOS的性能已经与CCD相差无几了。性能上:ISO感光度:由于CMOS每个像素由四个晶体管与一个感光二极管构成,还包含了放大器与数模转换电路,过多的额外设备缩小了单一像素感光区域的表面积,因此相同像素下,同样的尺寸,CMOS的感光度会低于CCD。分辨率:由于CMOS传感器的每个像素都比CCD传感器复杂,其像素尺寸很难达到CCD传感器的水平,因此,当我们比较相同尺寸的CCD与CMOS时,CCD

5、传感器的分辨率通常会优于CMOS传感器。噪点:由于CMOS每个感光二极管都需搭配一个放大器,如果以百万像素计,那么就需要百万个以上的放大器,而放大器属于模拟电路,很难让每个放大器所得到的结果保持一致,因此与只有一个放大器放在芯片边缘的CCD传感器相比,CMOS传感器的噪点就会增加很多,影响图像品质。耗电量:CMOS传感器的图像采集方式为主动式,感光二极管所产生的电荷会直接由旁边的电晶体做放大输出;而CCD传感器为被动式采集,必须外加电压让每个像素中的电荷移动至传输通道。而这外加电压通常需要1218V,因此CCD还必须有更精密的电源线路设计和耐压强度,高驱动电压使CCD的耗电量远高于CMOS。C

6、MOS的耗电量仅为CCD的1/8到1/10。成本:由于CMOS传感器采用一般半导体电路最常用的CMOS工艺,可以轻易地将周边电路(如AGC、CDS、Timing generator或DSP等)集成到传感器芯片中,因此可以节省外围芯片的成本;而CCD采用电荷传递的方式传送数据,只要其中有一个像素不能运行,就会导致一整排的数据不能传送,因此控制CCD传感器的成品率比CMOS传感器困难许多,即使有经验的厂商也很难在产品问世的半年内突破50%的水平,因此,CCD传感器的制造成本会高于CMOS传感器。前景:CCD在影像品质等方面均优于CMOS,而CMOS则具有低成本、低功耗、以及高整合度的特点。不过,随

7、着CCD与CMOS传感器技术的进步,两者的差异将逐渐减小,新一代的CCD传感器一直在功耗上作改进,而CMOS传感器则在改善分辨率与灵敏度方面的不足。相信不断改进的CCD与CMOS传感器将为我们带来更加美好的数码影像世界。2:传感器大小感光元件的尺寸是影响成像表现力的硬指标之一,但许多人对感光元件尺寸的表示方法大惑不解,例如全画幅,中画幅之类的感光元件是使用汉字来表示的;又有些诸如APS-C画幅,APS-H画幅的感光元件是使用英文缩写进行标注的;而更多的相机则使用的是诸如1/1.8英寸,1/2.3英寸这样的分数表示。那么到底在这些不同表示方法下的感光元件大小有什么不同?1/2.3比微4/3感光元

8、件具体小多少,它们和APS-C画幅相比又如何呢?为什么我们在谈到较大尺寸感光元件时会使用毫米做单位,而谈到小尺寸感光元件时却使用分数和英寸?首先我们来说说全画幅,当相机过渡到数码时代时,人们延续了胶片时代的标准,将采用与135胶卷相同尺寸的感光元件的数码单反相机称为“全画幅数码相机”。所以全画幅数码单反相机的感光元件尺寸为36×24mm。有别于胶片时代的胶卷,数码相机的传感器在制造成本上要比胶卷昂贵许多倍,为了降低制造成本,以进一步抢占中低端市场,相机厂商开始使用较小尺寸的感光元件,但问题也就随之而来了。在一些低端的卡片相机上,厂商们出于成本考虑,将传感器做的非常小,例如1/2.3英

9、寸的传感器,它的尺寸仅为6.16×4.62mm,在面积上只达到全画幅的3.2%。或许厂商认为把它叫做全画幅的3.2%不够好听,所以将其叫做1/2.3英寸,又是分数又是英寸,无非就是想让它听起来更大一些。 需要注意的是,说明书上标注的传感器尺寸例如1/2.3英寸,它并不是传感器的某一条边的长度,而是传感器对角线的长度(并且包含器件封装外壳的宽度,实际的还要更短),一般来说的单反相机传感器长宽比为3:2,卡片相机长宽比为4:3,通过勾股定理我们可以很容易的算出传感器真实的长宽数值。下面笔者通过一个表格向大家详细展示所有常见的传感器大小。大尺寸的优势  

10、60;有些单反相机采用的是大尺寸的APS-C画幅感光元件,而有些卡片相机采用的是1/2.3英寸感光元件,虽然它们可能都拥有1800万像素,但是区别在于二者的单个像素宽度不同。APS-C画幅、1800万像素感光元件的每一个像素宽约为4.3微米,而1/2.3英寸、1800万像素感光元件的每一个像素宽约有1.68微米单个像素越宽代表每个像素点的面积越大,通常情况下像素点的面积越大其捕捉的光子越多,感光性能越好,越不容易产生噪点。而像素点面积越小,所获得的信息量自然也就少了,为了对其加以补偿就必须加大电信号,而这么做又容易产生噪点。这就是为什么单反相机在夜晚的拍摄能力要比卡片相机好很多。当然随着科技的

11、不断发展,诸如背照式CMOS传感器的出现,这种差距也在慢慢的缩小,虽然离质变还有很长的路,但是我们有理由为之期待。焦距倍数相机感光元件的尺寸不同还给我们带来了一个关于镜头焦距转换倍率的问题。由于目前大部分数码相机的感光元件小于全画幅,故数码相机镜头的等效焦距比全画幅相机镜头的实际焦距大得多。为说明这种差异,于是引入了焦距转换系数(Focal Length Multiplier)这一概念。如50mm的标准镜头装到焦距转换系数为1.5的数码单反相机上,实际焦距则为75mm。在实际使用时数码相机的感光元件越小,其镜头焦距转换系数越大。   四:取景器

12、取景器即数码摄像机上通过目镜来监视图像的部分,现在的数码摄像机的目镜取景器只有黑白取景器和彩色取景器。但对于专业级的数码摄像机来说都是黑白取景器,因为黑白取景器更有利摄影师来正确构图。数码摄像机取景器结构和其液晶显示屏一样,两者均采用TFT液晶,而不同点在于两者的大小和用电量。1:光学取景器与镜头分开的一般称为光学取景器(以前傻瓜相机用的)取景器不管相机的镜头是定焦还是变焦,光学取景器的取景都是不变的,它工作时与镜头无关,它只是模仿镜头的视角和焦距。有家用傻瓜型相机(包括家用级数码相机)大都使用这种取景方式。取景器进光孔的大小决定了图像的清晰程度,对于戴眼镜的用户而言,有相对来说大一些的光孔就

13、显得比较重要了,因为眼镜会使他们的眼睛离取景器较远,这样就不可能准确地取景。有些取景器配备了可以进行屈光度调节的功能,使拍摄者在拍照时可以不戴眼镜就可进行较为准确的取景。不过,只有近、远视者才可以进行屈光调节,对于视力正常的拍摄者而言,屈光度调节毫无意义。光学取景器应尽量地靠近镜头的光轴中心,以减少取景视差。之所以会出现视差,是因为相机镜头和取景器是从不同位置观看拍摄对象的,因而它们各自看到的景物也是存在一些差异的。一般来说,光学取景器不能显示100%的镜头所拍摄图像,大概只有实际帧的85%或更少。这就是开发TTL取景器的原因。2:TTL取景器通过镜头的一般称为TTL取景器(大多用于单反相机)

14、取景器。这种取景器通常配备在较昂贵的数码相机上,它可显示镜头所拍摄到的图像。在传统胶卷相机中,绝大多数已经采用这种取景方式。不同TTL取景系统的工作方式是不同的,在具体使用时,所能显示的细节也不尽相同,但它们都是通过将穿过镜头的光线反射或散射,从而达到取景的目的。所以对于使用TTL光学取景器的数码相机来说,通过液晶屏和取景器看到的图像是一致的。3:液晶取景器 更有趣的是,有不少数码相机的液晶屏被设计成可以反转甚至可以旋转的结构,这样无论你是要从人堆后拍摄景物还是要拍摄底角度的景物都可以不必让身体很勉强的爬上爬下。你所要做的,只是轻轻的把液晶屏旋转到一个合适的角度就可以了。另外,由于在液晶屏幕上

15、显示的画面就是将会被记录在记忆体上的最终实际拍摄画面,所以使用液晶屏方式取景也可以获得类似单反相机的“所见即所得”的效果。同时,很多数码相机厂家喜欢在液晶屏显示取景的同时,在画面上叠加显示当时的拍摄参数以及记忆体的存储情况等信息,极大地方便了使用者了解数码相机的工作状态以更好的控制拍摄过程。但是使用数码相机背后的液晶屏进行取景操作也并非是十全十美的。首先开液晶屏取景是一件很费电操作,如果长时间的打开液晶屏取景,还要来回的看照片,删除,重拍等等。估计很少有数码相机的电池能支持约1小时的连续工作。其次,即使有类似SONY公司这样强悍的锂元素电池做后盾,长时间的打开液晶屏势必会造成机器整体工作温度的

16、上升。这很容易使数码相机的感光元件CCD受热产生“热噪点”而影响画面质量。还有,我们也常常会发现,在强烈的直射太阳光干扰下,液晶屏上显示的画面很容易变的模糊不清。为此我们不得不腾出一只手为液晶屏遮挡阳光,才能勉强看清楚画面,继续操作,真是叫人十分的烦恼。最后,由于液晶显示在画面色彩层次方面的限制,液晶屏对夜间景物的画面回放比较糟糕。人眼明明能很清晰看到夜间景物,通过液晶显示则变得黑忽忽一片了。4:电子取景器从外观上看,电子取景器和传统光学取景器没有太大的区别,但是你仔细看进去,就会发现取景里显示的,竟然也是一个清晰锐利的液晶画面!一般来说,这块内置在相机内部的0.5英寸大小液晶屏同样拥有与大液

17、晶屏相等的分辨率,而且功能,显示水平都与机背的大液晶屏完全相等。但是由于它面积小,就能有效的节省电力消耗。同时,其内置结构则轻易的解决了直射阳光干扰液晶屏画面的问题。这种取景器的优点与TTL取景器一样:显示待拍景物的全貌,在日光下可以看到,并且可以显示光圈、快门速度等拍摄信息,但除此之外,还可以显示相机菜单,这是其它取景器所无法做到的。电子取景器的缺点可归纳为三条:与光学取景器、TTL取景器不同,它需要大量的电源;类似于LCD显示屏,容易反光,从而影响取景的准确;与光学系统相比显得比较粗糙。最后一项会显得很重要,因为这样的系统无法显示拍摄帧里的最小细节,比如人眼是不是睁开的等等。与LCD取景器

18、相比,前两种取景器有许多优点。首先,可以避免因开启LCD而过度耗尽电量,从而可以增长拍摄时间和电池的使用寿命。其次,在室外拍摄时,它可以避免因LCD显示屏反光导致的取景误差。5:取景器的参数取景器有两个主要指标:取景器放大倍率(简称取景倍率)和取景范围。取景器放大倍率指通过取景器观察被摄体对眼睛的张角与用眼睛直接观察被摄体对眼睛张角之比,即通过取景器所看到的被摄体大小与用眼睛直接看到的被摄体大小之间的比值。取景放大倍率大,目视角度小,取景时看到的景物接近原物,真实感强;取景放大倍率小,目视角度大,取景时容易看到全景。若放大倍率太小,难以观察物体细部,不利于构图和对焦,而且物像相差悬殊,取景时不

19、舒服。放大倍率一般小于1X,大多在0.75X与0.95X之间。取景范围指通过取景器看到的景物范围与拍摄到底片的景物范围之比,用百分数表示。一般从取景器中所看到的画面并不完全是所拍摄的画面,总是比所拍摄的画面要小,一般为90%100%。所以说SLR只是基本避免了视差,只有达到100%的取景范围才能称为没有取景视差。通常只有专业机型才具有 100%取景范围。四:光圈光圈是一个用来控制光线透过镜头,进入机身内感光面的光量的装置,它通常是在镜头内。表达光圈大小我们是用f值。对于已经制造好的镜头,我们不可能随意改变镜头的直径,但是我们可以通过在镜头内部加入多边形或者圆型,并且面积可变的孔状光栅来达到控制

20、镜头通光量,这个装置就叫做光圈。光圈F值=镜头的焦距/镜头光圈的直径从以上的公式可知要达到相同的光圈F值,长焦距镜头的口径要比短焦距镜头的口径大。完整的光圈值系列如下:光圈F1.0,F1.4,F2.0,F2.8,F4.0,F5.6,F8.0,F11,F16,F22,F32,F45,F64。光圈的档位设计是相邻的两档的数值相差1.4倍(2的平方根1.414的近似值)相邻的两档之间,透光孔直径相差根号2倍,透光孔的面积相差一倍, 底片上形成的影像的亮度相差一倍,维持相同曝光量所需要的时间相差一倍。这里值得一提的是光圈 F 值越小,通光孔径越大(如右图所示),在同一单位时间内的进光量便越多,而且上一

21、级的进光量刚好是下一级的两倍。例如光圈从F8调整到F5.6 ,进光量便多一倍,我们也说光圈开大了一级。F5.6的通光量是F8的两倍。同理,F2是F8光通量的16倍,从F8调整到F2,光圈开大了四级。对于消费型数码相机而言,光圈 F值常常介于 F2.8 - F11。此外许多数码相机在调整光圈时,可以做 1/3 级的调整。F后面的数值越小,光圈越大。光圈的作用在于决定镜头的进光量,光圈越大,进光量越多;反之,则越小。光圈的作用1.能调节进入镜头里面的光线的多少,举例来说:家养的小猫,白天的瞳孔总是缩成一条线,到了晚上,就自动地打开成为一个圆孔。所以,同样道理,在拍照时,光线强烈,就要缩小光圈,光线

22、暗淡,就要开大光圈。也就是说F值越小的相机(其他参数不变),越有利于夜景拍摄。旋转镜头上的调节环或者数码相机机身上的旋钮,就是用来调节光圈大小的。2.光圈是决定景深大小最重要的因素,光圈大(光圈值小),景深小,光圈小(光圈值大),景深大!举例来说:患有近视眼的朋友,不戴眼镜的话,总是习惯性地眯起眼睛看东西,这样往往看得清楚一些,套用摄影的术语,这就叫做:缩小光圈(瞳孔),增加景深!光圈的种类固定光圈最简单的相机只有一个圆孔的固定光圈沃特侯瑟光圈。最初的可变光圈只是一系列大小不同的圆孔排列在一个有中心轴的圆盘的周围;转动圆盘可将适当大小的圆孔移到光轴上,达到控制孔径的效果。十九世纪中叶约翰

23、83;沃特侯瑟发明这种光圈。猫眼式光圈猫眼式光圈由一片中心有椭圆形或菱形孔的金属薄片平分为二组成,将两片有半椭圆形或半菱形孔的金属薄片对排,相对移动便可形成猫眼式光圈。猫眼式光圈多用于简单照相机。虹膜型的光圈是由多个相互重叠的弧形薄金属叶片组成的,叶片的离合能够改变中心圆形孔径的大小。有些照相机可以借助转动镜头筒上的圆环改变光圈孔径的大小,而有些照相机则是利用微处理器芯片控制微电机自动地改变光圈的孔径。弧形薄金属叶片可多达18片。弧形薄金属叶片越多,孔形越接近圆形。通过电子计算机设计薄金属片的形状,可以只用6片薄金属叶,得到近圆形孔径。瞬时光圈单反相机的光圈是瞬时光圈,只在快门开启的瞬间,光圈

24、缩小到预定大小。平时光圈在最大位置。兼快门光圈有的简便照相机的光圈兼有快门的功能,这类兼快门光圈大多是双叶片的猫眼式光圈,与单纯猫眼式光圈不同的是:兼快门光圈平时是完全关闭的:在按下快门的瞬间,双叶片光圈开启到预定的孔径后,保持这孔径到一段预定快门开启时间之后,立刻闭合:如此一来,光圈便又兼快门的功能五:快门快门是照相机用来控制感光片有效曝光时间的机构。是照相机的一个重要组成部分,它的结构、形式及功能是衡量照相机档次的一个重要因素。一般而言快门的时间范围越大越好。秒数低适合拍运动中的物体,某款相机就强调快门最快能到1/16000秒,可轻松抓住急速移动的目标。不过当你要拍的是夜晚的车水马龙,快门

25、时间就要拉长,常见照片中丝绢般的水流效果也要用慢速快门才能拍出来。1:快门速度快门速度单位是“秒”。专业135相机的最高快门速度达到1/16000秒。常见的快门速度有:1 1/2 1/4 1/8 1/15 1/30 1/60 1/125 1/250 1/500 1/1000 1/2000等。相邻两级的快门速度的曝光量相差一倍,我们常说相差一级。如1/60秒比1/125秒的曝光量多一倍,即1/60秒比1/125秒速度慢一级或称低一级2:时滞时间相机在不使用对焦锁定功能同时保证在自动对焦工作状态下,从按下快门释放按钮到开始曝光的这段时间称为快门时滞时间。3:延迟相机按下快门,这时相机自动对焦、测光

26、、计算曝光量、选择合适曝光组合进行数据计算和存储处理所需要的时间称为快门延迟。4:快门性能参数.快门速度(T3):通常定义成快门由全开到全关的时间.快门延迟时间(T1):快门由接到动作的命令一直到快门叶片开始遮住光路的时间.等效曝光时间(Te):一般算法为Te=T1+0.5*T3快门效率快门与变形长时间快门B快门当快门纽按下时,即开启快门,直到放开快门钮,才将快门关闭,这种快门称作B快门。T快门与B快门功能一样,只是于第二次按下快门纽才将快门关闭,较常见于传统机械式单眼相机,目前大部份相机己无此装备。X快门通常是指闪光灯同步开启的快门速度六:焦距一般我们说:焦距就是透镜中心到焦点的距离。但这仅

27、仅是单片薄透镜的情况,由于照相机的镜头都是由许多片透镜组合而成的,因此,情况远不是那么简单。镜头的焦距分为像方焦距和物方焦距。像方焦距是像方主面到象方焦点的距离,同样,物方焦距就是物方主面到物方焦点的距离。必须注意,由于照相机镜头设计,特别是变焦距镜头中广泛采用了望远镜结构,物方焦距与像方焦距是不一定相等的。我们平时说的照相机镜头的焦距是指像方焦距。如果你在相机的英文规格书上看过“f =”,那么后面接的数码通常就是它的焦长,即焦距长度。如:“f=8-24mm,38-115mm(35mm equivalent)”,就是指这台相机的焦距长度为8-24mm,同时对角线的视角换算后相当于传统35mm相

28、机的38-115mm焦长。一般而言,35mm相机的标准镜头焦长约是28-70mm,因此如果焦长高于70mm就代表支持望远效果,若是低于28mm就表示有广角拍摄能力。焦距,也称为焦长,是光学系统中衡量光的聚集或发散的度量方式,指从透镜中心到光聚集之焦点的距离。亦是照相机中,从镜片光学中心到底片、CCD或CMOS等成像平面的距离。具有短焦距的光学系统比长焦距的光学系统有更佳聚集光的能力。相机的镜头是一组透镜,当平行于主光轴的光线穿过透镜时,会聚到一点上,这个点叫做焦点,焦点到透镜中心(即光心)的距离,就称为焦距。焦距固定的镜头,即定焦镜头;焦距可以调节变化的镜头,就是变焦镜头。(当一束与凸透镜的主

29、轴平行的光穿过凸透镜时,在凸透镜的另一侧会被凸透镜汇聚成一点,这一点叫做焦点,焦点到凸透镜光心的距离就叫这个凸透镜的焦距。一个凸透镜的两侧各有一个焦点。)光心(Optical center):透镜中的一个特殊点,凡是通过该点的光,其传播方向不变。 我们用的照相机的镜头就相当于一个凸透镜,胶片(或是数码相机的感光器件)就处在这个凸透镜的焦点附近,或者说,胶片与凸透镜光心的距离大至约等于这个凸透镜的焦距。凸透镜(convex lens)能成像,一般用凸透镜做照相机的镜头时,它成的最清晰的像一般不会正好落在焦点上,或者说,最清晰的像到光心的距离(像距)一般不等于焦距,而是略大于焦距。具体的距离与被照

30、的物体与镜头的距离(物距)有关,物距越大,像距越小,(但实际上总是大于焦距)。由于我们照相时,被照的物体与相机(镜头)的距离不总是相同的,比如给人照相,有时,想照全身 的,离得就远,照半身的,离得就近。也就是说,像距不总是固定的,这样,要想照得到清晰的像,就必须随着物距的不同而改变胶片到镜头光心的距离,这个改变 的过程就是我们平常说的“调焦”。七:单反的处理器所谓影像处理器,就是固化到数码相机主机板的一个大型的集成电路芯片,主要功能是在成像过程中对CCD(或CMOS)蓄积下的电荷信息进行处理,用于完成数码图像的压缩、显示和存储。链接 1:佳能的DIGIC到目前为止,DIGIC处理器共有五代,D

31、IGIC DV芯片有两代。在多年数码相机研发的技术积累之上,佳能推出了DIGIC数字影像处理器,这是佳能EOS数码单反相机的“大脑”,它的出色表现直接带来了EOS的高品质。DIGIC是一种多功能的专用处理器,它集图像感应器控制器、自动白平衡、信号处理、图形压缩、存储卡控制和液晶屏显示控制等功能于一身,由于专门为数码相机设计,以往需要在芯片间大量传输的数据变成了单个芯片内部的数据流,DIGIC在最终图像效果、处理速度、耗电量等方面具有非常明显的优势。就DIGIC技术的整体效果而言,其性能优势主要集中在以下几个方面:高光部分的图像层次得到改善,以往高光部分缺乏层次被很多用户认为是动态范围不够,其实

32、这和图像处理器也有很大关系,因为运算能力不够,很多细节层次就有可能被丢弃了。DIGIC芯片的高性能图像处理能力保证了即时快速的处理,能够最大程度地在处理过程中保存图像信息。高分辨率与高信噪比同时实现,这同样是DIGIC芯片处理能力提高带来的优势,在高速图像处理器、高速的内部数据传输以及优化的处理流程帮助下,高分辨率与高信噪比带来的大数据量运算自然不在话下。采用DIGIC芯片更加节省电源,由于DIGIC芯片处理速度高,因此同样的计算过程花费的时间就少,再加上高度的功能集成,自然比较省电。DIGIC最早的一代技术,最早出现在Canon EOS 10D上,之后陆续使用在诸如Canon PowerSh

33、ot A520,Canon PowerShot S1 IS等型号相机上。DIGIC IIDIGIC II采用单芯片设计,这使得它可以通过减少零件来达到一个更加紧凑的设计。较上一代拥有较大的缓存,使用DDR内存,加快了开机时间和对焦速度。佳能声称在其DSLR产品线上,DIGIC II配合自己的CMOS传感器改善了颜色,锐度和自动白平衡。在一些高端机型上率先使用,如Canon EOS 400D等。写入记忆卡速度可高达5.8 MB/秒。DIGIC II在2007年爆出被破解,使得一些装备其的消费类机器可以使用实时直方图,RAW格式输出等高阶功能。DIGIC IIIDIGIC III应用于Canon

34、PowerShot G7、G9,A560,A570 IS及S5 IS上。佳能在自己的数码单反旗舰机型Canon EOS-1D Mark III上使用了两块DIGIC III芯片,使得可以达到每秒十张千万像素照片的连拍速度(与存储介质速度有关)。EOS-1D Mark III 也成为此时世界上连拍速度最快的相机。新功能1.面部识别与面部优先对焦优先曝光2.基于iSAPS数据库的自动场景识别,提供了更加快速的对焦和曝光组合DIGIC IV2008年,佳能公司随EOS 50D发布该款芯片。 EOS 50D(2008年8月发布)与Canon EOS 5D Mark II(2008年9月发布)采用DIG

35、IC 4影像处理器。 佳能宣称的改进有:1.较之前芯片更快的图像处理速度2.增强了高感光度下噪声控制能力3.使用14位RAW格式4.LiveView时可进行面部侦测自动对焦5.H.264 1080p格式编码(只限以CMOS作为感光元件)与之前的换代一个细节上的区别是,这一代直接使用阿拉伯数字来标注代数,而不是之前使用的罗马数字亦即DIGIC IV的说法是非正式的。佳能在中端单反Canon EOS 7D 上使用了两颗 DIGIC IV处理器,使得连拍速度达到每秒8张。现销售的使用DIGIC4的佳能数码单反机型有:EOS 1D Mark IV,EOS 5D Mark II,EOS 7D,EOS 6

36、0D,EOS 600D,EOS 550DEOS 500D,EOS 1100DDIGIC VDIGIC 5数字影像处理器,数据处理性能为DIGIC 4的约6倍,能够迅速处理从CMOS图像感应器获得的约1800万像素庞大图像数据,进一步实现低噪点化。高感光度拍摄也能不损失解像感地细致再现被摄体细节部分。DIGIC 5数字影像处理器的降噪处理使常用ISO感光度提高了约1级。另外,相机内图像处理采用14位(16384色阶)模数转换,能够再现丰富层次,以平缓过渡的色调表现夕阳下天空的渐变和人物肌肤等,拍出数码单反相机才有的画质。DIGIC VI北京时间21日消息,佳能(中国)正式发布了旗下首款搭载DIG

37、IC 6影像处理器,具有优秀短片拍摄功能的小型数码相机SX275 HS。该产品得益于佳能全新的影像处理器DIGIC 6,在短片拍摄方面尤为出众,支持全高清60p模式,画面更加流畅。2:尼康的EXPEED就如同佳能有 DIGIC III 影像处理器,Olympus 有 TruePic 影像处理器,尼康的影像处理器为 EXPEED。但尼康对 EXPEED 的说法却相当地有趣,尼康表示EXPEED与影像处理器或影像处理系统不同的是,EXPEED不会涉及具体的特性。相反,它涉及的是尼康最根源的综合数字影像处理理念,反映了尼康创建和处理影像的核心思想,EXPEED 集合了尼康长期以来以及从银盐胶片相机向

38、数字相机(始于 D1)转变的过程中,所积累的经验、优化的技术和知识。这一系统体现了Nikon对数字影像强烈的热情。这样一来,把层次拉的很高,想要从技术层次解释EXPEED的作用,一下子就失败了。虽然目前EXPEED系统还充满神秘感,但可以确认的是,在未来无论是DSLR或是DC,都将会以EXPEED作为产品的一个重要卖点,这也可以看作是尼康与其他厂商竞争时的新优势。色影无忌中的对比(一家之言,无从考证,自己判断),链接八:感光值isoiso感光值是传统相机底片对光线反应的敏感程度测量值,通常以iso 数码表示,数码越大表示感旋光性越强,常用的表示方法有iso 100 、400 、1000等,一般

39、而言, 感光度越高,底片的颗粒越粗,放大后的效果较差,而数码相机为也套用此iso值来标示测光系统所采用的曝光,基准iso越低,所需曝光量越高。目前数码相机感光元件最高ISO值可达3200。须要说明的是,虽然高ISO值可以提高数码相机在黑暗环境中的成像质量,但ISO越高,对画面质量的影响就越明显,出现的噪点就越多。ISO感光度是用数字表示对光线的敏感度,ISO感光度越高,表示对光线的敏感度越强。因此,高ISO感光度适合拍摄低光照及运动物体。但是图像可能包含噪点并且显得颗粒感增大。另一方面,低ISO感光度虽然不适合拍摄低光照及运动物体,但图像更细腻。ISO感光度越高和周围环境温度越高,图像的噪点越

40、多。高温,高ISO感光度或者长时间曝光,可能导致图像出现异常色彩。九:防抖最早推出防抖概念的是日本尼康公司,在1994年推出了具有减震(VR)技术的袖珍相机。次年,日本佳能公司推出世界上第一支带有图像稳定器的镜头EOS 75300mm f/45.6 IS,其中IS是影像稳定系统(Image Stabilizer)的缩写,这就是习惯上提到的“防抖系统”。 防抖,到目前为止,分三大类型:光学防抖、电子防抖和感光器防(CCD)。初次接触数码相机的人常常会有这样的困惑,即拍摄出来的画面不够清晰,老是会发生重影或模糊的情况。究其原因,除了偶尔的失焦(即相机未能正常对焦)以外,很大程度上是因为快门速度过低

41、所致。一般而言,在手持条件下,拍摄到清晰照片的快门速度应该达到焦距倒数甚至更高。举个简单例子:佳能A75的镜头等效焦距是35mm105mm,那么在广角端,快门速度应该至少保持1/40s才能保证拍摄的照片较为清晰,而在长焦端,快门速度应该要达到1/125秒才行。而且如果现场的光线条件不能满足这一要求,那么拍摄出清晰的照片便不是那么简单的事情了。可想而知,对于那些10倍光学变焦的产品而言,防抖技术则是更加必要,因为这些产品的长焦端往往达到370MM以上,因此,快门速度必须要在1/400秒以上才算合格,否则就只能望远兴叹了。其实在实际拍摄中拍摄者的手在胶片或是CCD/CMOS感光过程中的抖动是客观存

42、在的,防是防不住的,只能是靠特殊的结构来减小由于摄影者手的抖动带来的影像模糊。1:光学防抖作为光学防抖技术,并不是让机身不抖动,它是依靠特殊的镜头或者CCD感光元件的结构在最大程度的降低操作者在使用过程中由于抖动造成影像不稳定。通过镜头组实现防抖主要是以佳能和尼康为代表,它们依靠磁力包裹悬浮镜头,从而有效克服因相机振动产生的图像模糊,这对于大变焦镜头的数码相机所能起到的效果更加明显。通常,镜头内的陀螺仪侦测到微小的移动,并且会将信号传至微处理器立即计算需要补偿的位移量,然后通过补偿镜片组,根据镜头的抖动方向及位移量加以补偿,从而有效的克服因相机的振动产生的影像模糊。而通过CCD在实现防抖,目前只有柯尼卡美能达能够做到,它的原理与佳能、松下的光学防抖动技术相反,是依靠CCD的浮动达到防抖的目的。原理是将CCD先固定在一个能上下左右移动的支架上,通过陀螺仪感应相机抖动的方向及幅度,然后传感器将这些数据传送至处理器进行筛选、放大,计算出可以抵消抖动的CCD移动量。光学防抖又有镜头防抖和成像器件防抖两种。镜头防抖就是在镜头中设置专门的防抖补偿

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论