版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上一次函数知识点大全 一 变量:自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量常量:有些量的数值是始终不变的量叫常量函数:被变量是自变量的函数函数值:当自变量确定一个值,被变量随之确定的一个值被变量:自变量的变化引起另一个量的变化,另一个量是被变量二 一次函数和正比例函数的概念1概念: 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+
2、b(k,b为常数,k0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.判断一个等式是否是一次函数先要化简(3)当b=0,k0时,y= kx仍是一次函数.(正比例函数)(4)当b=0,k=0时,它不是一次函数.2. 函数的表示方法: )解析法,)列表法,)图象法列表法直观但不完全解析法准确完全但不直观图象法直观形象但不够准确也不太完全图象的画法:一列表二描点三连线(顺次用平滑的曲线)解析式的列法:一)实际问题,确定自变量的取值 二)符合题意三 函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和
3、纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象画函数图象一般分为三步:列表、描点、连线一次函数的图象由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.四 一次函数性质1. 一次函数y=kx+b(k,b为常数,k0)的性质(1)k的正、负决定直线的倾斜方向;k0时,y的值随x值的增大而增大;kO时,y的值随x
4、值的增大而减小(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;当b0时,直线与y轴交于正半轴上;当b0时,直线与y轴交于负半轴上;当b=0时,直线经过原点,是正比例函数(4)由于k,b的符号不同,直线所经过的象限也不同;函数kb经过的象限Y随x的变化图象y=kx+b(b0)k0b0一,二三Y随x的增大而增大 y=kx+b(b0)k0b0一三四Y随x的增大而增大 y=kx+b(b0)k0b0一二四Y随x的增大而减小 y=kx+b(b
5、0)k0b0二三四Y随x的增大而减小 (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的另外,从平移的角度也可以分析,例如:直线y=x1可以看作是正比例函数y=x向上平移一个单位得到的 2. 正比例函数y=kx(k0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k0时,图象经过第一、三象限,y随x的增大而增大; (3)当k0时,图象经过第二、四象限,y随x的增大而减小 y=kx (k>0)y=kx (k<0) 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=
6、kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P(2,1)不在直线y=x+l的图象上确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的
7、条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值五 一次函数与方程1. 一元一次方程、一元一次不等式及一次函数的关系 一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a0)的解,所对应的坐标(,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a0)的解2. 坐标轴的函数表达式
8、函数关系式x=0的图像是y轴,反之,y轴可以用函数关系式x=0表示;函数关系式y=0的图像是x轴,反之,x轴可以用函数关系式y=0表示3. 一次函数与二元一次方程组的关系 一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系4. 两条直线的位置关系与二元一次方程组的解 (1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1k2 (2)二元一次方程组无解
9、直线y=k1x+b1直线y=k2x+b2 k1=k2,b1b2 (3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b25. 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法其中未知系数也叫待定系数例如:函数y=kx+b中,k,b就是待定系数用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值;(4)将k、b的之带入y=kx+b,得到函数表达式。例如
10、:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式解:设一次函数的关系式为ykx+b(k0),由题意可知, 解 此函数的关系式为y=六 知识规律小结 1常数k,b对直线y=kx+b(k0)位置的影响当b0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b0时,直线与y轴的负半轴相交当k,b异号时,即-0时,直线与x轴正半轴相交;当b=0时,即-=0时,直线经过原点;当k,b同号时,即-0时,直线与x轴负半轴相交当kO,bO时,图象经过第一、二、三象限;当k0,b=0时,图象经过第一、三象限;当bO,bO时,图象经过第一、三、四象限;当kO,b0时,图象经过第一、二、四象限;当kO,b=0时,图象经过第二、四象限;当kO,bO时,图象经过第二、三、四象限2 直线y=kx+b(k0)与直线y=kx(k0)的位置关系直线y=kx+b(k0)平行于直线y=kx(k0)当b0时,把直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南林业大学《居住区景观设计》2022-2023学年第一学期期末试卷
- 西南交通大学《算法分析与设计》2022-2023学年第一学期期末试卷
- 西南交通大学《程学设计语言》2023-2024学年第一学期期末试卷
- 西华师范大学《版画基础》2022-2023学年第一学期期末试卷
- 西北大学《数学软件与实验》2022-2023学年第一学期期末试卷
- 企业精细化管理培训精细化管理的意义定义与方法课件
- 八年级英语上学期 单项选择常考点易错考点及专项训练(解析版)
- 冲压模具毕业设计-固定夹冲压弯曲模设计
- 如何与学生有效沟通模版课件
- 中国电子专用设备行业市场行情监测及发展前景研判报告
- 8《我们受特殊保护》(教学设计)2023-2024学年统编版道德与法治六年级上册
- 汽车调光玻璃行业专题报告(技术路径、市场空间、竞争格局等)-2024-08-零部件
- 2024秋国家开放大学《管理英语1》形考任务1-8参考答案
- DLT774-2015 火力发电厂热工自动化系统检修运行维护规程
- 2024国家开放大学电大本科《混凝土结构设计原理》期末试题及答案试
- 高大空间机电安装施工施工方法及工艺要求
- 2023-2024学年外研版(三起)英语五年级下册 Module 10 单元整体教学设计
- 第九届全国危险化学品安全知识竞赛考试题库大全-上(单选题)
- 大学专业选择智慧树知到期末考试答案章节答案2024年浙江大学
- 《我的家乡南京》课件
- 传媒公司录用合同范本
评论
0/150
提交评论