2018年秋九年级数学上册第23章解直角三角形23.2解直角三角形及其应用第1课时解直角_第1页
2018年秋九年级数学上册第23章解直角三角形23.2解直角三角形及其应用第1课时解直角_第2页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、23.2 第 1 课时解直角三角形知识点 1 已知一边一锐角解直角三角形1 .如图 23-2- 1,在 RtABC中, /C= 90, /B= 30,AB=8,则BC的长是()A.43B . 4 C . 8 D . 4击2 .在 Rt ABC中,已知/ 0= 90A. 3sin40 B . 3sin50 图 23 - 2 - 1,/A= 40,BC=3,贝 UAC等于(C. 3tan40 D . 3tan5023.在 RtABC中,/C= 90,/A的对边a= 4, cosB=-,则斜边c的长为_3如图 23-2 2,ACCD/ABD=60,AB=4 m,/C= 45。,贝U AC=5.在 R

2、tABC中,/C= 90,/A/B,/C的对边分别为a,b,c.已知/B= 60,c= 20,解这个直角三角形.知识点 2 已知两边解直角三角形6.如图 23 - 2-3,在厶ABC中,/C= 90,AC=1,BC=,3,那么/B的度数为()A. 60 B . 45 C . 30 D . 154.图 23 - 2 -22知识点 3 将斜三角形转化为直角三角形9 .已知等腰三角形的腰长为2 3,底边长为 6,则底角的度数为()A. 30B. 45 C. 60D. 120 10.教材例 2 变式如图 23-2 4,在厶ABC中,/A, /B,/C的对边分别为a, b,c.若/A=60 ,b= 20

3、 cm,c= 30 cm,求BC的长.图 23 - 2 -37.在ABC中,已知/C= 90,/A,/B,/C的对边分别是a,b,c.若a= 3,c=6,则下列解该直角三角形的结果中完全正确的一组是()b=诈3b=3bh32/A, /B,/C的对边分别为a, b,c.已知a= 5,b= 7, )A./A= 30,B. /A= 30,C. /A= 45,D./A= 45,/B= 60 ,/B= 60 ,/B= 45/B= 45 8.在 RtABC中,/C= 90解这个直角三角形.(角度精确到311.如图 23 2 5,在ABC中,ADL BC垂足为D.若AC=6 , 2,/C= 45,tanB=

4、3,贝 UBD等于()4A. 2 B . 3 C . 32 D . 2313.:2017 义乌以与边AB AC分别交于一点,与点A作直线,与边BC交于点 D,若/ADB=60,点D到AC的距离为2,则AB的长为_14.:2017 临沂如图 23 2 7,在?ABCD中,对角线AC BD相交于点Q若AB=4,3BD-10, sin /BD& 二,贝 U ?ABC啲面积是 _ .515._ 在厶ABC中,AB=8,/B= 30 ,AC=5,则BC=_.416. 如图 23 2 8,已知 tanC= 3,点P在边CA上,CF= 5,点M N在边CB上,PM=3PN若MN=2,求PM的长.12

5、.如图 23- 2 6,在厶ABC中,/A= 30,tanB=f,AC=23,则AB的长度为(A. 4 B . 5RtABC/ B= 90 )的锐角顶点A为圆心,适当长为半径作弧, 再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点图 23 - 2 -5图 23 27图 23 28517.如图 23 2 9,在ABC中,AD是BC边上的高,AE是BC边上的中线,cosC=61 sinB=3,AD=1.3(1) 求BC的长;(2) 求 tan /DAE的值.图 23 - 2 -918._ 在 RtABC中,/A= 90,有一个锐角为 60,BC=6.若点P在直线AC上(不与 点A,C重合)

6、,且/ABP=30,贝U CP的长为_ .19. 一副三角尺按图 23- 2- 10 放置,点C在FD的延长线上,AB/ CF,/F=ZAC= 90,/E= 30,/A=45,AC= 122,求CD的长.图 23 - 2- 107教师详解详析1 .D解析/RtAABC 中,/ C= 90,/ B= 30, AB=8, BC= 8Xf = 4 3.故选DAD2 6m解析在RtAABD 中,/ D= 90,/ ABD= 60, AB= 4.vsin/ ABD=屁,sin60 = AD, AD= 2 3. / A= 180/ C/ B= 180 90- 60= 30, b = c2 a2= 202

7、102= 10 3.6.C7.Ca& 解析由勾股定理,可先求得C 的值.然后选用tanA=b 利用计算器求得锐角A最后根据两锐角互余,可得另一锐角B 的度数.解:va= 5, b= 7, c = ,a2+ b2= _52+ 72=74.TAa 5-tanA=-,b 7AB= AC= 2 3, BC= 6,过点 A 作 ADLBC 于点 D,则BD= 3.在Rt ABD 中,cosB= BB=,/ B= 30,即等腰三角形的底角为3010.解:如图,过点 C 作 CDLAB 垂足为 D.BCBCCOSB= AB 即COS30D3. 6解析由余弦定义,得cosB=4= 3,解得 c= 6.

8、c 32.4.v在Rt ACD 中,/ D= 90AD 口sin/ ACD=,即sin45AC5.解:在Rt ABC 中,v/,/ C= 45, AD= 23 ,=C3AC= 26mC= 90 ,/ B= 60,o=4,1 1a= 2C= 2X 20=10,9.A解析如图,在 ABC 中, / A 35 32 168在Rt ACD中,CDADsinA= ACcosA= AC CD= bsin60=20X.3,AD= bcos60=20X* =10,BD= 3010=20,911.A解析 AO 62,/ C= 45 , AAC-sin45= 62-2 = 6.ADAD仙吐 3BD= 3,.BD=

9、 y =2.故选A12.B解析过点 C 作 CDL AB 于点 D.CD/sinA=1CD= AC-sinA=AC-sin30=23X空空=3. BD= 2. AB= AD+ BD= 3 + 2= 5.故选B13. 2 3 解析如图,由题意可知 AD 平分/ BAC 作 DEIAC 垂足为 E,AB则 DE= 2,所以 BD= DE= 2.在Rt ABD 中,tan/ ADB=命 所以 AB= 2X3= 2 3.314. 24解析根据sin/ BD(= 可以求出厶 BCD 中 BD 边上的高,从而求出?ABCD 的面5积.过点 C 作 CEL BD 于点 E,在RtAECD 中,AD COSA

10、=AC AD= AC-cos30=23X-23 * 5=3./tanB=CD=3BD=2,CE CECD= ABCAB= 4,12XBDX CE= 24.1016.解:如图,过点 P 作 PDLMN 于点 D.PD 4tanC=CD=3,设 PD= 4x,贝 U CD= 3x./ CP= 5,由勾股定理,得(3x)2+ (4x)2= 52, 解得 x= 1,.PD= 4./ MN= 2, PM= PN PDL MN - MD= 1,PM=42+ 12=17.17解:(1)在厶 ABC 中,TAD 是 BC 边上的高,/ADB=ZADC= 90在厶 ADC 中, / ADC= 90,在厶 ADB

11、 中, / ADB= 90, BD= AB- AD = 22, BC= BD+ CD= 22 + 1./ AE 是 BC 边上的中线,1厂 1 -CE= 2B C=2+ 2 DE= CE- CD= 2-1,DE 厂 1tan/ DAE= AD= 2 718. 23 或 4 3 或 6解析(1)如图,/ ABP= 30/ABC= 60,.ZACB= 30/BC=6,.AB=3,AC=33.AP在Rt BAP 中,tan30=乔, AP= AB-tan30=3X .3,图图图图COSC= -ZC=45AD= 1,ZC=45,.CD= AD= 1.AD 1ADsin二,AD= 1,AB=3,AB 3sinB 11 CP= 33 3= 23.如图,由图知 AB= 3, AC= 3 3.又/ ABP= 30, AP=3,. CP= 33 +3= 43.如图,/ ABC=ZABP= 30,/ BAC= 90,/C=ZP,. BC=BP./C= 60, CBP 是等边三角形,CP= BC= 6.J圈圈图图故答案为 2 3 或 4 3 或 6.AC=122,BC=AC=122./ AB/ CF,.ZBCM=ZABC= 45CM= BM= 12.在厶 EFD 中,/ F= 90,/ E= 30, CD= CM- MD= 12 43.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论