第七章抽样调查_第1页
第七章抽样调查_第2页
第七章抽样调查_第3页
第七章抽样调查_第4页
第七章抽样调查_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第七章第七章 抽样调查抽样调查教学目的与要求教学目的与要求通过本章的学习,要理解和掌握抽样调查通过本章的学习,要理解和掌握抽样调查的的概念、特点,抽样误差的含义、计算方法概念、特点,抽样误差的含义、计算方法,抽样估计的置信度,推断总体参数的方,抽样估计的置信度,推断总体参数的方法,能结合实际资料进行抽样估计。法,能结合实际资料进行抽样估计。一、抽样调查的概念和特点一、抽样调查的概念和特点 概概 念念 特特 点点第一节第一节 抽样调查的概念和作用抽样调查的概念和作用P165P165 P167二、抽样推断的内容二、抽样推断的内容参数估计参数估计假设检验假设检验第三节抽样调查的基本原理第三节抽样调查

2、的基本原理(一)总一)总 体体 和和 样样 本本总体总体: 又称全及总体。指所要认识的研究对又称全及总体。指所要认识的研究对象全体。总体单位总数用象全体。总体单位总数用“N”N”表示。表示。样本样本: 又称子样。是从全及总体中随机抽取又称子样。是从全及总体中随机抽取出来,作为代表这一总体的那部分单出来,作为代表这一总体的那部分单位组成的集合体。样本单位总数用位组成的集合体。样本单位总数用“n”n”表示。表示。(二)二)总体指标和样本指标总体指标和样本指标 总体指标总体指标 反映总体数量特征的全及指标。反映总体数量特征的全及指标。总体指标总体指标研究总体中研究总体中的数量标志的数量标志总体平均数

3、总体平均数总体方差总体方差X=X NX=XF F(X-X) N2=2(X-X)F F2=2研究总体中研究总体中的品质标志的品质标志总体成数总体成数成数方差成数方差2= P(1-P)P = N1N(只有两种表现) 什么是总体成数?将总体所包含的总体单位按某一标志划分为两大部分,具有将总体所包含的总体单位按某一标志划分为两大部分,具有某种特征的单位数占全部单位数的比重,就是总体的成数。某种特征的单位数占全部单位数的比重,就是总体的成数。 总体的成数就是这个总体的平均数。总体的成数就是这个总体的平均数。产品质量合格品不合格品数量(件)合 计N1N0N总体平均数x10ffxfxPNNNNNN10101

4、01(总体成数) 样本指标样本指标根据样本数据计算的综合指标根据样本数据计算的综合指标。研究数研究数量标志量标志 样本平均数样本平均数 x=xnx=xff样本标准差样本标准差研究品研究品质标志质标志样本成数样本成数 成数标准差成数标准差 np=nnxx2ffxxx2ppp1(三)样本容量和样本个数三)样本容量和样本个数样本容量:样本容量:一个样本包含的单位数。用一个样本包含的单位数。用 “ “n”n”表示。表示。一般要求一般要求 n 30n 30样本个数:样本个数: 从一个全及总体中可能抽取的样本数目。从一个全及总体中可能抽取的样本数目。(四)四)重复抽样和不重复抽样重复抽样和不重复抽样重复抽

5、样:重复抽样:又称回置抽样。又称回置抽样。不重复抽样:不重复抽样: 又称不回置抽样。又称不回置抽样。可能组成的样本数目:可能组成的样本数目:N N(N-1N-1)()(N-2N-2)(N-n+1N-n+1)可能组成的样本数目:可能组成的样本数目:nN例如:从例如:从A A、B B、C C、D D四个单位中,抽出两个单位构成四个单位中,抽出两个单位构成 一个样本,问可能组成的样本数目是多少?一个样本,问可能组成的样本数目是多少?重复抽样重复抽样AAACADBABBBCBDABCACBCCCDDADBDCDDNn= 4= 42 2 =16 (=16 (个样个样本本) )不重复抽样不重复抽样N(N-

6、1)()(N-2).4 43 = 12(3 = 12(个样本个样本) )抽抽 样样 误误 差差一、抽样误差的含义一、抽样误差的含义由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。二、影响抽样误差大小的因素二、影响抽样误差大小的因素1931931 1、总体各单位标志值的差异程度、总体各单位标志值的差异程度2 2、样本的单位数、样本的单位数3 3、抽样方法、抽样方法4 4、抽样调查的组织形式、抽样调查的组织形式三、抽样平均误差 概概 念念 理理 解解假设总体包含假设总体包含1 1、2 2、3 3、4 4、5 5,五个数字。,五个数字。则:

7、总体平均数则:总体平均数 : x =1+2+3+4+55= 3现在,采用重复抽样从中抽出两个,组成一个样本。现在,采用重复抽样从中抽出两个,组成一个样本。可能组成的样本数目:可能组成的样本数目:5 52 2 = 25(= 25(个个) )如:如:1 31 42 43 5.+ 2=2+2=2.5+2=3+2= 4抽样平均误差是抽样平均数或抽样成数的抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平标准差,反映了抽样指标与总体指标的平均误差程度。均误差程度。抽样指标与样本抽样指标与样本指标的平均误差指标的平均误差(2-3)+(2.5-3)+(3-3)+(4-3)+.25 抽抽

8、 样样 平平 均均 误误 差差 的的 计计 算算 公公 式式抽样平均数的平均误差抽样成数平均误差MXxx2MPpp2实际上,利用上述两个公式是计算不出抽样平均误差的。想一想,为什么?抽样平均数平均误差的计算方法抽样平均数平均误差的计算方法采用重复抽样采用重复抽样:此公式说明,抽样平均误差与总体标准差成正比,此公式说明,抽样平均误差与总体标准差成正比,与样本容量成反比。(当总体标准差未知时,可与样本容量成反比。(当总体标准差未知时,可用样本标准差代替)用样本标准差代替)通过例题可说明以下几点通过例题可说明以下几点:样本平均数的平均数等于总体平均数样本平均数的平均数等于总体平均数。抽样平均数的标准

9、差仅为总体标准差的抽样平均数的标准差仅为总体标准差的可通过调整样本单位数来控制抽样平均误差可通过调整样本单位数来控制抽样平均误差。nxn1采用不重复抽样:采用不重复抽样:公式表明:抽样平均误差不仅与总体变异程度、样本容量有关,而且与总体单位数的多少有关。例题一例题一:随机抽选某校学生随机抽选某校学生100100人,调查他们的体人,调查他们的体重。得到他们的平均体重为重。得到他们的平均体重为5858公斤,标公斤,标准差为准差为1010公斤。问抽样推断的平均误差公斤。问抽样推断的平均误差是多少?是多少?例题二:例题二:某厂生产一种新型灯泡共某厂生产一种新型灯泡共20002000只,随机只,随机抽出

10、抽出400400只作耐用时间试验,测试结果只作耐用时间试验,测试结果平均使用寿命为平均使用寿命为48004800小时,样本标准差小时,样本标准差为为300300小时,求抽样推断的平均误差?小时,求抽样推断的平均误差?Nnnx12例题一解例题一解: :)(110010公斤nx即即: :当根据样本学生的平均体重估计全部学生的平均当根据样本学生的平均体重估计全部学生的平均 体重时体重时, ,抽样平均误差为抽样平均误差为1 1公斤。公斤。例题二解例题二解: :)(15400300小时nxNnnx12)(42.13200040014003002小时计算结果表明:根据部分产品推断全部产品的平均使用寿命计算

11、结果表明:根据部分产品推断全部产品的平均使用寿命 时,采用不重复抽样比重复抽样的平均误差要小。时,采用不重复抽样比重复抽样的平均误差要小。已知:已知:则:则:已知:已知:则:则:n=100=10 x=58N=2000 n=400=300 x=4800抽样成数平均误差的计算方法抽样成数平均误差的计算方法采用重复抽样采用重复抽样:采用不重复抽样:采用不重复抽样:例题三例题三: 某校随机抽选某校随机抽选400400名学生,发现戴眼镜的学名学生,发现戴眼镜的学生有生有8080人。根据样本资料推断全部学生中戴人。根据样本资料推断全部学生中戴眼镜的学生所占比重时,抽样误差为多大?眼镜的学生所占比重时,抽样

12、误差为多大?例题四例题四:一批食品罐头共一批食品罐头共6000060000桶,随机抽查桶,随机抽查300300桶桶,发现有,发现有6 6桶不合格,求合格品率的抽样平桶不合格,求合格品率的抽样平均误差?均误差?nppp1Nnnppp11例例 题题 三三 解解:已知:已知:400n801n则:样本成数则:样本成数%20400801nnp02.04008.02.01nppp即:即:根据样本资料推断全部学生中戴眼镜的学根据样本资料推断全部学生中戴眼镜的学 生所占的比重时,推断的平均误差为生所占的比重时,推断的平均误差为2%2%。例例 题题 四四 解:解:已知已知:60000N300n61n则:样本合格

13、率则:样本合格率98.030063001nnnp(%)808.030002.098.01npppNnnppp11(%)806.060000300130002.098.0计算结果表明:计算结果表明:不重复抽样的平均误差小于重复抽样,不重复抽样的平均误差小于重复抽样, 但是但是“N”N”的数值越大,则两种方法计算的数值越大,则两种方法计算 的抽样平均误差就越接近。的抽样平均误差就越接近。四、抽四、抽 样样 极极 限限 误误 差差含义含义:抽样极限误差指在进行抽样估计时,根据研究抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样对象的变异程度和分析任务的要求所确定的样本

14、指标与总体指标之间可允许的最大误差范围。本指标与总体指标之间可允许的最大误差范围。计算方法计算方法:它等于样本指标可允许变动的上限它等于样本指标可允许变动的上限或下限与总体指标之差的绝对值。或下限与总体指标之差的绝对值。= pp - Pp P ppp抽样平均数极限误差抽样平均数极限误差:抽样成数极限误差:抽样成数极限误差:XxxxxXxx五、置信度与置信区间五、置信度与置信区间 含含 义义抽样误差的概率度是测量抽样估计可靠抽样误差的概率度是测量抽样估计可靠程度的一个参数。用符号程度的一个参数。用符号“ “ t ”t ”表示。表示。公式表示:公式表示: t = = t (t t 是极限误差与抽样

15、平均误差的比值)是极限误差与抽样平均误差的比值)(极限误差是极限误差是 t t 倍的抽样平均误差)倍的抽样平均误差)上式可上式可变形为:变形为:估计量的抽样标准估计量的抽样标准总体参数优良估计的标准总体参数优良估计的标准 无偏性无偏性一致性一致性有效性有效性二、总体参数的区间估计二、总体参数的区间估计区间估计三要素区间估计三要素估计值估计值抽样误差范围抽样误差范围抽样估计的置信度抽样估计的置信度总体参数区间估计的特点:总体参数区间估计的特点:px ,px, tFpx,三、总体参数区间估计的方法三、总体参数区间估计的方法(一)根据给定的抽样误差范围,(一)根据给定的抽样误差范围, 求概率保证程度

16、求概率保证程度分析步骤:分析步骤:1 1、抽取样本,计算抽样指标。、抽取样本,计算抽样指标。2 2、根据给定的极限误差范围估、根据给定的极限误差范围估 计总体参数的上限和下限。计总体参数的上限和下限。3 3、计算概率度、计算概率度。4 4、查表求出概率、查表求出概率F F(t t),),并对并对 总体参数作出区间估计。总体参数作出区间估计。(二)根据给定的概率二)根据给定的概率F F(t t),),推算推算 抽样极限误差的可能范围抽样极限误差的可能范围分分 析析 步步 骤骤:1 1、抽取样本,计算样本指标。、抽取样本,计算样本指标。2 2、根据给定的、根据给定的F F(t t)查表求得概率度查

17、表求得概率度 t t 。3 3、根据概率度和抽样平均误差计算极限误差。、根据概率度和抽样平均误差计算极限误差。4 4、计算被估计值的上、下限,对总体参数作、计算被估计值的上、下限,对总体参数作 出区间估计。出区间估计。某农场进行小麦产量抽样调查,小麦某农场进行小麦产量抽样调查,小麦播种总面积为播种总面积为1 1万亩,采用不重复简单万亩,采用不重复简单随机抽样,从中抽选了随机抽样,从中抽选了100100亩作为样本亩作为样本进行实割实测,测得样本平均亩产进行实割实测,测得样本平均亩产400400斤,方差斤,方差144144斤。斤。(2 2)若概率保证程度不变,要求抽样若概率保证程度不变,要求抽样

18、允许误差不超过允许误差不超过1 1斤,问至少应斤,问至少应 抽多少亩作为样本?抽多少亩作为样本?(1 1)以)以95.45%95.45%的可靠性推断该农场小的可靠性推断该农场小 麦平均亩产可能在多少斤之间?麦平均亩产可能在多少斤之间?要求计算要求计算:例例 题题 一:一:例题一解题过程:例题一解题过程:已知:已知:N=10000 n=100N=10000 n=100 9545.0,144,4002tFx问题一解问题一解:1 1、计算抽样平均误差、计算抽样平均误差斤19.110000100110014412Nnnx2 2、计算抽样极限误差、计算抽样极限误差斤38.219.12xxt3 3、计算总

19、体平均数的置信区间、计算总体平均数的置信区间上限:上限:斤38.40238.2400 xx下限:下限:斤62.39738.2400 xx即:以即:以95.45%95.45%的可靠性估计该农场小麦平均亩产量在的可靠性估计该农场小麦平均亩产量在 397.62397.62斤至斤至402.38402.38斤之间斤之间. .问题二解:问题二解:已知:已知: 不变tF斤1x则则样本单位数:样本单位数:22222tNNtnx亩6 .5441442100001144100002222即:当即:当斤1x ,9545.0时为tF至少应抽至少应抽544.6544.6亩作为样本。亩作为样本。例例 题题 二:二:某纱厂

20、某时期内生产了某纱厂某时期内生产了1010万个单位的纱,按纯随机万个单位的纱,按纯随机抽样方式抽取抽样方式抽取20002000个单位检验,检验结果合格率为个单位检验,检验结果合格率为95%95%,废品率为,废品率为5%5%,试以,试以95%95%的把握程度,估计全部的把握程度,估计全部纱合格品率的区间范围及合格品数量的区间范围?纱合格品率的区间范围及合格品数量的区间范围?已知:已知:100000N2000n%95p%51 p 95.0tF96.1tNnnppp11%48.010000020001200005.095.0%94.0%48.096.1ppt区间下限:区间下限:%06.940094.

21、095.0pp区间上限:区间上限:%94.950094.095.0pp例例 题题 三:三:为调查农民生活状况,在某地区为调查农民生活状况,在某地区50005000户农民户农民中,按不重复简单随机抽样法,抽取中,按不重复简单随机抽样法,抽取400400户户进行调查,得知这进行调查,得知这400400户中拥有彩色电视机户中拥有彩色电视机的农户为的农户为8787户。户。要求计算:要求计算:1 1、以、以95%95%的把握程度估计该地区全部农户的把握程度估计该地区全部农户中拥有彩色电视机的农户在多大比例之间?中拥有彩色电视机的农户在多大比例之间?2 2、若要求抽样允许误差不超过若要求抽样允许误差不超过

22、0.020.02,其它,其它条件不变,问应抽多少户作为样本?条件不变,问应抽多少户作为样本?例例 题题 三三 的的 问问 题题 一一 解:解:已知:已知:N=5000N=5000n=400871n 95.0tF1 1、计算样本成数、计算样本成数:%75.21400871nnp2 2、计算抽样平均误差:、计算抽样平均误差:Nnnppp110198.0500040014007825.02175.03 3、计算抽样极限误差:、计算抽样极限误差:0388.00198.096.1ppt4 4、计算总体、计算总体P P的置信区间的置信区间:下限:%87.17pp上限:%63.25pp即:以即:以95%95%的把握程度估计该地区农户中拥有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论