buck-boost课程设计_第1页
buck-boost课程设计_第2页
buck-boost课程设计_第3页
buck-boost课程设计_第4页
buck-boost课程设计_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等级:湖南工程学院课 程 设 计课程名称 电力电子技术课程设计 课题名称 Buck-Boost变换器设计 专 业 班 级 学 号 姓 名 指导教师 2013 年 月 日湖南工程学院课 程 设 计 任 务 书课程名称 电力电子技术课程设计 课 题 Buck-Boost变换器设计 专业班级 学生姓名 学 号 指导老师 审 批 任务书下达日期 2013年 月 日任务完成日期 2013年 月 日设计内容与设计要求设计内容:1理论设计:根据所学的理论知识,了解DCDC电路的工作原理,设计整流电路的主电路和控制电路。2仿真实践:根据所设计的系统,利用仿真软件MATLAB建立模型,并对系统进行仿真,分析系统

2、所得到的波形。3动手实践:在仿真所设计的系统的基础上,利用PROTEL软件绘出原理图,结合具体所用元器件管脚数、外型尺寸、考虑散热和抗干扰等因素,设计PCB印刷电路板,复杂电路板通过外协完成,简单电路板可以让学生在实验室自制,最后在电力电子实验室完成系统电路的组装、调试,分析所得到的结果。设计要求:1完整的设计方案,计算过程。2设计说明书应规范。3实验结果应与仿真结果基本一致。4. 选题要求:每班可以选三组,每组2人,要求采用不同的PWM生成方法,如自然采样法、规则采样法、S函数实现等。主 要 设 计 条 件1、设直流电源电压为,输出电压,输出电压的脉动控制在5电阻负载为。利用仿真软件搭建系统

3、模型;在电力电子实验室对系统进行实验验证。2、提供试验和仿真条件。说 明 书 格 式1. 封面2. 课程设计任务书3. 目录4. 系统总体方案设计5. 系统硬件设计6. 软件设计(包括流程图)7. 系统的安装调试说明8、 总结 9、参考文献10、附录11、课程设计成绩评分表。 进 度 安 排第一周 星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星期三:主电路设计星期四:控制电路设计 星期五:控制电路设计;第二周 星期一: 控制电路设计星期二:电路原理及波形分析、实验调试及仿真等星期四:写设计报告,打印相关图纸;星期五:答辩及资料整理参 考 文 献1石玉 栗书贤电力电子技术题例与电

4、路设计指导机械工业出版社,1998 2王兆安 黄俊电力电子技术(第4版)机械工业出版社,20003浣喜明 姚为正电力电子技术高等教育出版社,20004莫正康电力电子技术应用(第3版)机械工业出版社,20005郑琼林耿学文电力电子电路精选机械工业出版社,19966刘定建,朱丹霞实用晶闸管电路大全机械工业出版社,19967刘祖润 胡俊达毕业设计指导机械工业出版社,19958刘星平电力电子技术及电力拖动自动控制系统校内,199927目 录第一章 概述············

5、3;·······························6第二章 Buck-Boost变换器设计总体思路··············

6、3;······72.1 电路总设计思路···································72.2 电路设计原理与框图····&#

7、183;··························7第三章 Buck-Boost主电路设计····················

8、·········83.1 Buck-Boost主电路基本工作原理······················83.2 主电路保护(过电压保护)············&

9、#183;·············103.3 Buck-boost变换器元件参数·························113.3.1 占空比·····

10、83;································113.3.2 滤波电感L···············&#

11、183;···················113.3.3 滤波电容····························&#

12、183;·······113.4 Buck-Boost仿真电路及结果·························12 3.4.1 Buck-Boost变换器仿真模型·········&

13、#183;············12 3.4.2 不同占空比的仿真结果·······················13第四章 控制和驱动电路模块········

14、83;·····················174.1 SG3525脉冲调制器控制电路························174.1.

15、1 SG3525简介································174.1.2 SG3525内部结构和工作特性············

16、83;······174.2 SG3525构成控制电路单元电路图····················204.3 驱动电路设计·················

17、3;··················20第五章 总体与体会······························

18、;········21第六章 参考文献········································2

19、2第七章 附录············································23第一章 概述自20世纪50年代,美国宇航局以小型化重量

20、轻为目标而为搭载火箭开发首个开关电源以来,在半个多世纪的发展中,开关电源逐步取代了传统技术制造的相控稳压电源,并广泛应用于电子整机设备中。随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。近20年来,集成开关电源沿两个方向发展。第一个方向是对开关电源的控制电路实现集成化。与国外开关电源技术相比,国内从1977年才开始进入初步发展期,起步较晚、技术相对落后。目前国内DC/DC模块电源市场主要被国外品牌所占据,它们覆盖了大功率模块电源的大部分以及中小功率模块电源一半的市场。但是,随着国内技术的进步和生产规模的扩大,进口中小功率模块电源正在快速被国产DC/DC产品所代替。当今世界

21、软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(8090)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200300KHz,功率密度已达27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。直流斩波电路的应用非常广,但在实际产品中应用时也存在一些问题:首先电源系统本身的耗能元件如电源内阻、滤波器阻抗、连接导线及接触电阻等都会引起系统

22、损耗。可控型器件IGBT的栅极电阻Rg会随着驱动器件电流额定值的增大而减小,而栅极电阻Rg的变化又会对电路的性能产生影响。以及驱动电路如何实现过电流电压保护问题。第二章 Buck-Boost变换器总体设计思路2.1 电路的总设计思路直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。它在电源的设计上有很重要的应用。一般来说,斩波电路的实现都要依靠全控型器件。在这里,我所设计的是基于IGBT的降压斩波短路。直流升降压斩波电路主要分为三部分,分别为主电路模块,控制电路模块和驱动电路模块。除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。2.2 电

23、路设计基本原理与框图 电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。因此,一个完整的升降压斩波电路也应该包括主电路,控制电路,驱动电路和保护电路致谢环节。设计要求是输出电压Uo=0V-40V可调的DC/DC变换器,这里为升降压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。IGBT的通断用PWM控制,用PWM方式来控制IGBT的通断需要使用脉宽调制器SG352

24、5来产生PWM控制信号。根据升降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如下图所示。控制电路(含保护电路)(汗驱动电路主电路 图2.1 总结构框图 第三章 Buck-Boost主电路设计3.1 Buck-Boost主电路基本工作原理 V通时,电源E经V向L供电使其贮能,此时电流为i1。同时,C维持输出电压恒定并向负载R供电。V断时,L的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。a 原理图b 波形图图3.1 升压/降压斩波电路的原理图及波形图数量关系: 稳态时,一个周期T内电感L两端电压uL

25、对时间的积分为零,即:当V处于通态时,;当V处于断态时,;于是:所以输出电压为: 由此可见,改变导通占空比,就能够控制斩波电路输出电压U。的大小。当0<<1/2时为降压,当1/2<<1时为升压,故称作升降压斩波电路。 图3.1 b)中给出了电源电流i1和负载电流i2的波形,设两者的平均值分别为I1和I2,当电流脉动足够小时,有: 由上式可得:如果V、VD为没有损耗的理想开关时,则:其输出功率和输入功率相等,可将其看作直流变压器。3.2 主电路保护(过电压保护) 本次设计的电路要求输出电压为15V,所以当输出电压设定时,一旦出现过电压,为了保护电路和期间,应立刻将电路断开

26、,及关断IGBT的脉冲,使电路停止工作。以为芯片SG3525的引脚10端为外部关断信号输入端,所以可以利用SG3525的这个特点进行过电压保护。当引脚10端输入的电压等于或超过8V时,芯片将立刻锁死,输出脉冲将立即断开。所以可以从输出电压中进行电压取样,并将取样电压通过比较器输入10端实现电压保护。,从而 过电压保护电路图如下所示:图3.2 过电压保护电路图3.3 Buck-Boost变换器元件参数3.3.1 占空比 根据Buck-Boost变换器的性能指标要求及Buck-Boost变换器输入输出电压之间的系求出关占空比的变化范围,要求输出电压为:0 40V,得占空比范围为:0 0.667。3

27、.3.2 滤波电感L 滤波电感Lf于开关管的存储时间与最小控制时间之和,变换器的输出将出现失控或输出纹波加大,因此希望变换器工作在电感电流连续状态。所以,以最小输出电流Io min作为电感临界连续电流来设计电感。取L95e-5H。3.3.3 滤波电容C 在开关变换器中,滤波电容通常是根据输出电压的纹波要求来选取。取C3e-6 F。输出滤波电容的耐压值决定于输出电压的最大值,一般比输出电压的最大值高一些,但不必高太多,以降低成本。由于最大输出电压为15V,则电容的耐压值为15V。3.4 Buck-Boost变换器仿真电路及结果3.4.1 Buck-Boost变换器仿真模型 根据升降压斩波电路原理

28、图,建立升压-降压式变换器仿真模型,如图(5)所示图3.3 升压-降压式变换器仿真模型由IGBT构成直流升降压斩波电路的建模和参数设置:(1)电压源参数取Uo=20V;(2)IGBT按默认参数设置,并取消缓冲电路;(3)二极管按默认参数设置;(4)负载参数取R5,C3e06 F;(5)电感支路L95e-5H(6)打开仿真参数窗口,选择ode23tb算法,相对误差设置为1e-03,开 始仿真时间设置为0,停止仿真时间设置为0.002 s;(7)控制脉冲周期设置为1e-04s,控制脉冲占空比分别设为10、25%、50、66.7%。3.4.2 不同占空比的仿真结果1.脉冲发生器中的脉冲宽度设置为脉宽

29、的10%,仿真结果如图3.4所示:图3.4 控制脉冲占空比10%从图3.4可以看出,负载上平均电压大约为2V,波形为有少许波纹的直流电压;理论计算:,Uo与E极性相反;仿真结果与升降压斩波理论在脉动范围之内。2.脉冲发生器中的脉冲宽度设置为脉宽的25%,仿真结果如图3.5所示:图3.5 控制脉冲占空比25% 从图3.5可以看出,负载上平均电压大约为6.5 V,波形为有少许波纹的直流电压;理论计算:,Uo与E极性相反;仿真结果与升降压斩波理论在脉动范围之内。3.脉冲发生器中的脉冲宽度设置为脉宽的50%,仿真结果如图3.6所示:图3.6 控制脉冲占空比50%从图3.6可以看出,负载上平均电压大约为

30、20 V,波形为有少许波纹的直流电压;理论计算:,Uo与E极性相反;仿真结果与升降压斩波理论在脉动范围之内。4.脉冲发生器中的脉冲宽度设置为脉宽的66.7%,仿真结果如图3.7所示:图3.7 脉冲占空比66.7%从图3.7以看出,负载上平均电压大约为40V,波形为有少许波纹的直流电压;理论计算:,Uo与E极性相反;仿真结果与升降压斩波理论在脉动范围之内。第四章 控制和驱动电路模块4.1 SG3525A脉宽调制器控制电路4.1.1 SG3525简介 SG3525A系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。在芯片上的5.1V基准电压调定在±1,误差

31、放大器有一个输入共模电压范围。它包括基准电压,这样就不需要外接的分压电阻器了。一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。在CT和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。一只断路脚同时控制软起动电路和输出级。只要用脉冲关断,通过PWM(脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。当VCC低于标称值时欠电压锁定禁止输出和改变软起动电容器。输出级是推挽式的可以提供超过200mA的源和漏电流。SG3525A系列的NOR(或非)逻辑在断开状态时输出为低。·工作范围为8.

32、0V到35V·5.1V±1.0调定的基准电压·100Hz到400KHz振荡器频率·分立的振荡器同步脚4.1.2 SG3525内部结构和工作特性(1)基准电压调整器 基准电压调整器是输出为5.1V,50mA,有短路电流保护的电压调整器。它供电给所有内部电路,同时又可作为外部基准参考电压。若输入电压低于6V时,可把15、16脚短接,这时5V电压调整器不起作用。(2)振荡器3525A的振荡器,除CT、RT端外,增加了放电7、同步端3。RT阻值决定了内部恒流值对CT充电,CT的放电则由5、7端之间外接的电阻值RD决定。把充电和放电回路分开,有利于通过RD来调节死

33、区的时间,因此是重大改进。这时3525A的振荡频率可表为: (3)误差放大器误差放大器是差动输入的放大器。它的增益标称值为80dB,其大小由反馈或输出负载决定,输出负载可以是纯电阻,也可以是电阻性元件和电容的元件组合。该放大器共模输入电压范围在1.83.4V,需要将基准电压分压送至误差放大器1脚(正电压输出)或2脚(负电阻输出)。3524的误差放大器、电流控制器和关闭控制三个信号共用一个反相输入端,3525A改为增加一个反相输入端,误差放大器与关闭电路各自送至比较器的反相端。这样避免了彼此相互影响。有利于误差放大器和补偿网络工作精度的提高。(4)闭锁控制端10利用外部电路控制10脚电位,当10

34、脚有高电平时,可关闭误差放大器的输出,因此,可作为软起动和过电压保护等。(5)有软起动电路比较器的反相端即软起动控制端8,端8可外接软起动电容。该电容由内部V ref的50A恒流源充电。达到2.5V所经的时间为点空比由小到大(50)变化。(6)增加PWM锁存器使关闭作用更可靠比较器(脉冲宽度调制)输出送到PWM锁存器。锁存器由关闭电路置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使过流信号立即消失,锁存器也可维持一个周期的关闭控制,直到下一周期时钟信号使倘存器复位为止。另外,由于PWM锁存器对比较器来的置位信号锁存,将误差放大器上的噪音、振铃及系统所有的跳动和振荡信号消除了。只有在下

35、一个时钟周期才能重新置位,有利于可靠性提高。(7)增设欠压锁定电路电路主要作用是当IC块输入电压小于8V时,集成块内部电路锁定,停止工作(其准源及必要电路除外),使之消耗电流降到很小(约2mA)。(8)输出级由两个中功率NPN管构成,每管有抗饱和电路和过流保护电路,每组可输出100mA。组间是相互隔离的。电路结构改为确保其输出电平或者是高电平或者是低电平的一个电平状态中。为了能适应驱动快速的场效应功率管的需要,末级采用推拉式电路,使关断速度更快。11端(或14端)的拉电流和灌电流,达100mA。在状态转换中,由于存在开闭滞后,使流出和吸收间出现重迭导通。在重迭处有一个电流尖脉冲,其持续时间约100ns。使用时VC接一个0.1f电容可以滤去尖峰。另一个不足处是吸电流时,如负载电流达到50mA以上时,管饱和压降较高(约1V)。4.2 SG3525构成的控制电路单元电路图图4.1 控制电路单元电路图4.3 驱动电路设计图4.2 驱动电路原理图第五章 总结与体会 通过这次为期两周电力电子技术的课程设计, 我学会了很多的东西,能够很好的运用所学的电力电子、数字电子技术和模拟电子技术等知识解决了一些问题,体会到了将知识用于实际的快乐感。 本次设计中我查阅了相关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论