版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章复习一(5.1) 姓名:一、填空:1有 并且两边 的两个角是对顶角;有 并且 的两个角是邻补角。2、对顶角的性质:对顶角 .1下列说法正确的是 A、相等的角是对顶角 B、一个角的邻补角只有一个 C、补角即为邻补角 D、对顶角的平分线在一条直线上3、垂直和垂线:当两条直线相交所成的四个角中 时,这两条直线互相垂直,其中的 叫做 的垂线。ABCDEF111211311O ABC ABCDE 2题 3题 4题2如图,ABCD,垂足为O,EF经过点O,且3260,则1 .4、垂直的性质:(1)经过一点有且只有 与 垂直;(2)垂线段 。 3如图,三角形ABC是直角三角形,C900,其中最长的线段
2、是 . 5、点到直线的距离:直线外一点到这条直线的 ,叫做点到直线的距离。 4如图,线段 的长度表示点D到直线BC的距离,线段 的长度表示点B到直线CD的距离,线段 的长度表示点A、B之间的距离。二、例题导引2 如图,一辆汽车在笔直的公路AB上由A向B行驶,MN分别是位于公路AB两侧的村庄。(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中的AB上分别画出点P、Q的位置;(2)当汽车从A出发向B行驶时,在哪一个位置到村庄M、N的路程之和最短?请在图中标出这个位置。ABCDEFO ·M·NBA 例3 如图,直线AB、CD相交于点
3、0,OD平分BOF,EOCD于O, EOF=1180,求COA的度数。 三、2、如图所示,直线AB与直线CD的位置关系是_,记作_,此时,AOD=_=_=_= . 2题 3题3、如图所示,直线AB,CD,EF相交于点O,则AOD的对顶角是_,AOC的邻补角是_;若AOC=50°,则BOD=_,COB=_ .4、如图所示,直线AB,CD相交于点O,已知AOC=70°,OE平分BOD,则EOD=_. 4题 5题5、如图,直线AB和CD相交于点O,若AOD与BOC的和为236°,则AOC的度数为 A.62° B.118° C.72° D.5
4、9°6、如图所示,下列说法不正确的是 毛 A.点B到AC的垂线段是线段AB; B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段; D.线段BD是点B到AD的垂线段 ABCDEO 6题 7题 11题 7、如图,已知AB、CD相交于点O,OEAB于O, EOC=280,则AOD= 度。8、如图所示,村庄A要从河流l引水入庄,需修筑一水渠,请你画出修筑水渠的路线图. ABCO9、如图所示,如果OAOC,O是垂足,OB是一条射线,且AOBAOC=23,求BOC的度数。 10、点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到
5、160;直线m的距离为 A.4cm B.2cm; C.小于2cm D.不大于2cm11、如图所示,ADBD,BCCD,AB=a, BC=b,则BD的范围是 A.大于a B.小于b C.大于a或小于b D.大于b且小于a12、如图,过钝角顶点B作AB、BC、CA的垂线,分别交于AC于D、E、F,并指出所画三条垂线的垂足。 ABC ABCDMN13、如图,MNAB,垂足为M,MC平分AMD, BMD=440,求CMN的度数。 14、OC把AOB分成两部分且有下面两个等式成立:AOC=1/3直角1/3BOC;BOC=1/3平角1/3AOC.问:(1)OA与OB的位置关系怎样?(2)OC是否为AOB的
6、平分线?并写出判断的理由。5.2.1平行线教学目标1、了解平行线的概念,理解同一平面内两条直线间的位置关系;2、掌握平行公理及平行线的画法。重点难点重点:平行线的概念、画法及平行公理;难点:理解平行线的概念和根据几何语言画出图形。教学过程 一、情景导入我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:投影1 双杆上面的两根横杆、支撑横杆的直干它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题。二、平行线演示:分别将木条a、b与木条c钉在一起,,并把它们想象成三条直线。转动a,直线a从
7、在c的左侧与直线b相交逐步变为在右侧与b相交。想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?abcabcabc有,这时直线a与直线b左右两旁都没有交点。同一平面内, 不相交的两条直线叫做平行线.直线AB与直线CD平行,记作“ABCD”.注意:“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;“不相交”就是说两条直线没有公共点。归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画。相交和平行两种。注意:这里所指的两条直线是指不重合的直线。三、平行公理再来看上面的实验,想象一下
8、,在转动木条a的过程中,有几个位置能使a与b平行?有且只有一个位置使a与b平行. 如图,过点B画直线a的平行线,能画几条?试试看。 只能画一条。从实验和作图,我们可以得到怎样的事实?经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理。在上图中,过点C画直线a的平行线,它与过点B画的的平行线平行吗?试试看。 过点C画的直线a的平行线与过点B画的直线a的平行线相互平行。这说是说,如果两条直线都与第三条直线平行,那么这条直线也互相平行.符号语言:ba,ca bc.如果b与c不平行,那么经过直线外一点就有两条直线与已知直
9、线平行,所以上面的结论是平行公理的推论。四、课堂练习投影21、判断下列说法是否正确?(1)在同一平面内,两条线段不相交就平行;(2)在同一平面内,平行于直线AB的直线只有一条。(3)如果几条直线都和同一条直线平行,那么这几条直线都互相平行。2、课本13面练习.五、课堂小结1、什么是平行线?“平行”用什么表示?2、平面内两条直线的位置关系有哪些?3、平行公理及推论是什么?作业:5.1.3 同位角、内错角、同旁内角教学目标1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角.重点难点重点:同位角、内错角、同旁内角的概念与识别;难点:识别同位角、内错角、同旁内角。教学过程 一、
10、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。我们来研究那些没有公共顶点的两个角的关系。 56871与2、4与8、5与6、3与7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。同位角形如字母“F”。3与2、4与6的位置有什么共同的特点?在截线的两旁,被截直线之间。具有这种位置关系的两个角叫做内错角.内错角形如字母“N”。3与6、4与2的位置有什么共同的特点?在截线的同旁,
11、被截直线之间。具有这种位置关系的两个角叫做同旁内角.同旁内角形如字符“匚”。思考:这三类角有什么相同的地方?(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。三、例题例 如图,直线DE,BC被直线AB所截,(1)1与2、1与3、1与4各是什么角?为什么?(2)如果1=4,那么1与2相等吗?1与3互补吗?为什么? 31BD4ACE2解:(1)1与2是内错角,因为1与2在直线DE,BC之间,在截线AB的两旁;1与3是同旁内角,因为1与3在直线DE,BC之间,在截线AB的同旁;1与4是同位角,因为1与4在直线DE,BC的同方向,在截线AB的同方向。(2)如果1=4,又因为2=4,所
12、以1=2;因为3+4=1800,又1=4,所以1+3=1800,即1与3互补。四、课堂练习1、课本7练习1;2、投影2指出图中所有的同位角、内错角、同旁内角; ABCD3、课本7练习2。作业:5.2.2 平行线的判定(一)教学目标经历探索两直线平行条件的过程,理解两直线平行的条件.重点难点重点:探索两直线平行的条件;难点:理解“同位角相等,两条直线平行”。教学过程 一、情景导入.投影1如图1,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行? 5687 图1 图2 要解决这个问题,就要弄清楚平行的判定。二、直线平行的条件以前我们
13、学过用直尺和三角尺画平行线,如图(课本13面图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。简化图5.2-5,得图3. 图3 1与2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然1与2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单地说:同位角相等,两条直线平行.符号语言: 1=2 ABCD.如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的
14、就是平行线。投影2如图,(1)如果2=3,能得出ab吗?(2)如果241800,能得出ab吗? 32bac41 (1)2=3(已知)3=1(对顶角相等)1=2 (等量代换) ab(同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:2=3 ab.(2) 4+2=180°,4+1=180° (已知) 2=1 (同角的补角相等) ab. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
15、 简单地说:同旁内角互补,两直线平行. 符号语言: 4+2=180° ab.四、课堂练习1、课本15练习1,补充(3)由A+ABC1800可以判断哪两条直线平行?依据是什么?2、课本16 2题。五、课堂小结怎样判断两条直线平行?作业:5.2.2 平行线的判定(二)教学目标1、掌握直线平行的条件,并能解决一些简单的问题;2、初步了解推理论证的方法,会正确的书写简单的推理过程。重点难点重点:直线平行的条件及运用;难点:会正确的书写简单的推理过程。教学过程 一、复习导入 我们学习过哪些判断两直线平行的方法?投影1(1)平行线的定义:在同一平面内不相交的两条直线平行。(2)平行公理的推论:如
16、果两条直线都平行于第三条直线,那么这两条直线也互相平行。(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、例题 投影2 例 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 答:这两条直线平行。 ba ca(已知) 1=2=90°(垂直的定义) bc(同位角相等,两直线平行)你还能用其它方法说明bc吗? 方法一: 如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内
17、角相等,两直线平行”说明. (1) (2)注意:本例也是一个有用的结论。例2 投影3 如图,点B在DC上,BE平分ABD,DBE=A,则BEAC,请说明理由。 ABCDE 分析:由BE平分ABD我们可以知道什么?联系DBE=A,我们又可以知道什么?由此能得出BEAC吗?为什么?解:BE平分ABD ABE=DBE(角平分线的定义) 又DBE=A ABE=A(等量代换) BEAC(内错角相等,两直线平行)注意:用符号语言书写证明过程时,要步步有据。四、课堂练习投影21、如图,1=2=55°,试说明直线AB,CD平行? 3ABCDEF21 1题 2题2、如图所示,已知直线a,b,c,d,e
18、,且1=2,3+4=180°,则a与c平行吗?为什么?作业:课本17面7,18面12题(提示:画图说明)。补充题:如图所示,已知1=2,AB平分DAB,试说明DCAB.第五章复习二(5.2)一、双基回顾1、平行线:在同一平面内, 的两条直线叫做平行线。2、两条直线的位置关系: .注这里指不重合的两条直线,两条直线重合视为一条直线。1判断正误并改错:两条直线不相交就平行,不平行就相交;在同一平面内,两条线段不相交就平行;两条直线的位置关系有:相交、垂直、平行.3、平行公理:经过直线 有且只有 与这条直线平行。推论:如果两条直线都和 平行,那么这两条直线 。4、同位角、内错角和同旁内角两
19、条直线被第三条直线所截,在截线的 ,被截直线的 的两个角叫做同位角;在截线的 ,被截直线 的两个角叫做内错角;在截线的 ,被截直线 的两个角叫做同旁内角。 2指出图中所有的同位角、内错角、同旁内角。 ABCDE5、平行线的判定(1) ,两直线平行;(2) ,两直线平行;(3) ,两直线平行.3如图,判断DEAC的条件有哪些?依据是什么? ACDEFB二、例题导引例1 如图,下列推理中正确的有 因为12,所以BCAD; 因为23,所以ABCD; 因为BCD+ADC=1800,所以BCAD; 因为BCD+ADC=1800,所以BCAD.A、1个 B、2个 C、3个 D、4个 ABCD4132 例2
20、 如图,BE平分ABC,12,你能推断哪两条线段平行?说明理由。ABCDE321 例3 如图,已知ACAE,BDBF, 12,AE与BF平行吗?为什么? ACDEFB12三、练习提高夯实基础 1、下列说法正确的有 不相交的两条直线是平行线;在同一平面内,不相交的两条线段平行;过一点有且只有一条直线与已知直线平行;若ab,bc,则a与c不相交. A.1个 B.2个 C.3个 D.4个 2、在同一平面内,两条不重合直线的位置关系可能是 毛 A.平行或相交 B.垂直或相交 C.垂直或平行 D.平行、垂直或相交3、如图,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若A=1,则可判断_,因
21、为_. (2)若1=_,则可判断AGBC,因为_. (3)若2+_=180°,则可判断CDAB,因为_. 3题4、如图,光线AB、CD被一个平面镜反射,此时1=3,2=4,那么AB和CD的位置关系是 ,BE和DF的位置关系是 . BACDEF1234 4题 5题5、如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角ABC=72°,则另一个拐角BCD=_时,这个管道符合要求.6、不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互 A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交7、如图,ABEF,ECD=E,则CDAB.说理如下: ECD=E
22、( )CDEF( )又ABEF( ) CDAB( ). 8、根据下列要求画图. (1)如图(1)所示,过点A画MNBC; (2)如图(2)所示,过点P画PEOA,交OB于点E,过点P画PHOB,交OA于点H; (3)如图(3)所示,过点C画CEDA,与AB交于点E,过点C画CFDB,与AB的延长线交于点F. (1) (2) (3)9、如图所示,已知1=2,AC平分DAB,试说明DCAB.10、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180°,则a与c平行吗?为什么? 10题 11题 13题能力提高11、如图1所示,下列条件中,能判断ABCD的是 毛A.BAD=BCD
23、B.1=2; C.3=4 D.BAC=ACD12、在同一平面内,直线a,b相交于P,若ac,则b与c的位置关系是_.13、如图所示,直线a,b被直线c所截,现给出下列四个条件:1=5;1=7;2+3=180°4=7.其中能说明ab的条件序号为( ) A. B. C. D.14、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是 A、0个 B、1个 C、2个 D、3个17、已知,如图,点B在AC上,BDBE,1+C=90°,问射线CF与BD平行吗?试用两种方法说明理由.18、如图所示,已知AB、CD被EF所截,EG平分BEF,FG平分EFD,且1+2=
24、900,试说明ABCD. 12BACDEFG探索创新19、如图,当BEF=B,BEDBD时,AB与CD有什么位置关系,试说明理由。 BACDEF5.3.1 平行线的性质教学目标 经历探索直线平行的性质的过程,掌握平行线的性质,并能用它们进行简单的推理和计算.重点难点 重点:直线平行的性质;难点:区别平行线的性质和判定,综合运用平行线的性质和判定。教学过程一、复习导入怎样判定两条直线平行?这就是说,利用同位角、内错角和同旁内角可以判定两条直线平行,反过来,两条直线平行,同位角、内错角和同旁内角各有什么关系呢?二、平行线的性质利有练习本上的横线画两条平行线ab,然后画一条直线c与这两条直线相交,标
25、出所形成的八个角,如图。 5786 度量这些角的度数,把结果填入表内:角12345678度数哪些角是同位角?它们具有怎样的数量关系? 哪些角是内错角?它们具有怎样的数量关系?哪些角是同旁内角?它们具有怎样的数量关系?再任意画一条截线d,同样度量并计算各个角的度数,这种数量关系还成立吗?那么由此你得到怎样的事实:1、平行线被第三条直线所截,同位角相等,简单说成:两直线平行, 同位角相等. 2、平行线被第三条直线所截,内错角相等,简单说成:两直线平行, 内错相等. 3、平行线被第三条线所截,同旁内角互补,简单说成:两直线平行, 同旁内角互补.思考:平行线的性质与平行线的判定有什么关系?由角的数量关
26、系得出两条直线平行是“判定”,由两条直线平行得出角的数量关系是“性质”,因此,两者的条件和结论正好互换。你能根据性质1,推出性质2吗?如上图,ab 1=2(两直线平行,同位角相等) 又3=1(对顶角相等) 2=3.对于性质3,你能写出类似的推理过程吗?三、例题如图是一块梯形铁片的线全部分,量得D=100°,C=115°, 梯形另外两个角分别是多少度? 分析:梯形有什么特征?A与D、B 与C有什么关系?解:ABCD A+D=1800,B +C=1800A=1800D=18001000=800 B=1800C=18001150=650 答:梯形的另外两个角分别是800,650。
27、四、课堂练习课本21面练习1、2。五、课堂小结这节课我们学习了平行线的性质,要注意平行线的性质与平行线的判定的区别与联系,以便我们能准确地运用。 作业:5.3.2命题、定理教学目标 1、了解命题、定理、证明的含义,会区分命题的题设和结论。重点难点 重点:命题及组成;难点:区分命题的题设和结论。教学过程一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断。数学中象这类对某件事情作出判断的语句还很多,值得我们研究。二、命题再来看几个句子:投影1 如果两条直线都与第三条直线平行,那么这两条直线也互相平行; 等式
28、两边都加同一个数,结果仍是等式; 相等的角是对顶角;如果两条直线不平行,那么内错角不相等;同位角相等。 这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题。思考:投影2 下列语句是命题吗?为什么? 蓝蓝的天空白云飘;这不是坑人吗?画ABCD。不是命题。因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断。二、命题的构成命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。命题常可以写成“如果那么”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论。例如,上面命题中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两
29、条直线也互相平行”是由已知事项推出的事项,是结论。有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果那么”的形式。例如,上面命题可改写成:如果两个角是同位角,那么这两个角相等。请你把上面的命题、改写成“如果那么”的形式,并指出它的题设和结论。三、命题的真假上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立。要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即
30、可。探究:投影3 下面的命题是真命题,还是假命题?1、锐角小于它的余角;2、若a2b2则,ab.3、如图,如果1=2,CEBF,那么ABCD; ABCDEF12 1、是假命题,如650角的余角是350,而650大于350。2、是假命题,如当a=3,b=2时a2b2,而ab。3、是真命题。证明:CEBF C=2(两直线平行,同位角相等)又1=2(已知)C=1(等量代换)ABCD(内错角相等,两直线平行)四、课堂练习投影41、判断下列句子是不是命题:(1)平行用符号“”表示;(2)你喜欢数学吗?(3)熊猫没有翅膀。2、将下列命题改写成“如果那么”的形式,并指出它的题设与结论。(1)等角的补角相等;
31、(2)负数之和仍为负数;(3)两点确定一条直线。3、如图,如果ACDE,1=2,那么ABCD,这个命题是真命题,还是假例题? ABCDE12 五、课堂小结1、命题及构成;2、公理、定理、证明的概念.作业:54 平 移教学目标经历欣赏、观察、分析图形的过程,理解平移的概念,探索平移的性质;通过动手操作,学会平移后图形的画法;学会用运动的观点分析问题,在欣赏和操作中获得数学美的熏陶.重点难点重点:平移的性质和作平移后的图形;难点:作平移后的图形。教学过程一、情景导入仔细观察下面的图案,它们有什么共同特点?它们都是由一些相同的部分组成的。能否根据其中相同的部分绘制出整个图案?若能,请你想象可以怎么绘
32、制?投影2 这种绘制方法实际上就是平移。那么究竟什么是平移?平移有哪些性质?下面我们就来探讨一下。二、平移的性质探究:如何在一张半透明的纸上,画出一排形状大小如图5.4-2的雪人? 投影3 可以把半透明的纸盖在图5.4-2上,先描出一个雪人,然后按同一方向陆续移动这张纸,再描出第二个、第三个观察:在所画的相邻两个雪人中,找出鼻尖A ,帽顶B,纽扣C的对应点A、B、C,连接这些对应点,观察得出的线段,它们的位置、长度有什么关系?投影45 雪人甲雪人乙可以发现:AABBCC,且AA=BB=CC请你用平推三角尺的方法验证三条线段是否平行, 用刻度尺度量三条线段是否相等. 再作出一些其他对应点的线段,
33、它们是否仍有前面的关系?归纳:投影6把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. 新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.三、平移的概念一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的,也不一定是竖直的,如图投影78。 平移在我们日常生活中是很常见的.利用平移可以制作出很多美丽的图案,请欣赏:投影9 你能举出生活中一些利用平移的例子吗?如在笔直公路上跑着的汽车,工厂里传送带上的产品,大厦中电梯的升降投影1012四、平移作图例
34、投影13 如图,平移三角形ABC,使点A移动到点A.画出平移后的三角形ABC. 分析:“点A移动到点A ”这句话告诉我们什么?平移的方向和距离。解:连接AA,过点B作AA的平行线l,在l上截取BB =AA,点B 就是点B的对应点.类似地,你能作出点C的对应点C 吗?连接AB,BC,AC,则ABC 就是平移后的三角形.反思:1、作平移后的图形必须知道平移的方向和距离;2、作平移后的图形只须作出几个关键点。五、课堂练习1、投影14下图中,图形(2)可以通过图形(1)平移得到吗? (1) (2) (1) (2) (1) (2) (1) (2) 2、投影15 在下面的六幅图案中,(2)(3)(4)(5
35、)(6)中的哪个图案可以通过平移图案(1)得到? 3、投影16将图中的小船向左平移四格.六、课堂小结投影171、什么是平移?平移的条件是什么?2、平移有哪些性质?3、平移作图形的依据是什么?怎样作平移后的图形?作业:第五章复习三(5.35.4)一、双基回顾 1、平行线的性质:(1)两直线平行, ;(2)两直线平行, ;(3)两直线平行, 。1如图,ABEF( 已知 )A+ =1800( )DEBC( 已知 )DEF= ( )ADE= ( )ACDEFB 2、命题: 叫命题; 命题是由 组成的;命题有 和 两种。 2把命题“垂直于同一条直线的两条直线平行。”改写成“如果,那么”的形式,并指出它的
36、条件和结论。 3、平移:图形的平移必须具备两个基本条件,一是 ;二是 。 4、平移的性质:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新的图形与原图形的 完全相同;(2)新图形中的每一点,都是由原图形中的某一点平移得到的,这两个点是 ,连接各组对应点的线段 。 3下面 2,3,4,5 幅图中图 是由图1平移得到的. 1 2 3 4 5 二、例题导引 例1 如图,已知1=110°,2=110°,3=70°,求4的度数. EFGHMNPQ 例2 如图,已知B、E分别是AC、DF上的点,1=2,C=D. (1)ABD与C相等吗?为什么.(2) A与 F相等吗
37、?请说明理由.(1) 54321(2) 例3 将图中的三角形向左平移四格,再向下平移二格。三、练习升华夯实基础 1、下列运动不是平移的是 A、屋檐下滴落的雨点 B、飞机在跑道上滑行C、篮球在中飞行 D、电梯中的人2、如图所示,DEF经过平移可以得到ABC,那么C的对应角和ED的对应边分别是 A.F,AC B.BOD,BA C.F,BA D.BOD,AC 2题 3题 3、如图,已知直线AB,CD被直线EF所截,若1=2,则AEF+CFE=_.4、如3题图,ABCD,则与1相等的角(1除外)共有 毛A.5个 B.4个 C.3个 D.2个 5、如图,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_,因为 . OPa 5题 8题 6、设a、b、c为同一平面内的三条直线,下列判断不正确的是 毛 A.设ac,bc,则ab B.若ac,bc,则ab C.若a b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 认识人民币小学数学教案
- 高中物理必修三教案6篇
- 幼师职业生涯规划书
- 食堂年终工作总结(19篇)
- 英文在职证明模版
- DB12-T 1061-2021 律师民事诉讼文书格式
- 2024-2025学年重庆乌江新高考协作体高三上学期二调生物试题及答案
- 上海市县(2024年-2025年小学五年级语文)人教版开学考试(下学期)试卷及答案
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 荆楚理工学院《软件测试》2022-2023学年期末试卷
- 选煤企业安全生产标准化课件
- 国家开放大学儿童发展问题的咨询与辅导形考周测验三周-周参考答案
- 就业引航筑梦未来
- 电子信息工程专业大学生生涯发展展示
- 生猪买卖合同
- 班会议题探索未来职业的发展趋势
- 跨境电商营销(第2版 慕课版)教案 项目五 社会化媒体营销
- 【年产5000吨氯化苯的工艺设计11000字(论文)】
- 食堂员工培训内容-食堂从业人员培训资料
- 零售督导工作流程
- 道闸系统施工方案
评论
0/150
提交评论