版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.高中数学必修一求函数解析式解题方法大全及配套练习一、 定义法:根据函数的定义求解析式用定义法。【例1】设,求. =【例2】设,求.解:设【例3】设,求.解:又故【例4】设.解:.二、 待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。【例1】 设是一次函数,且,求【解析】设 ,则 【例2】已知二次函数f(x)满足f(0)=0,f(x+
2、1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则 f(0)= c= 0 f(x+1)= a+b(x+1)= ax2+(2a+b)x+a+b 由f(x+1)= f(x)+2x+8 与、 得 解得 故f(x)= x2+7x.【例3】已知,求.解:显然,是一个一元二次函数。设则 又比较系数得: 解得:三、换元(或代换)法:已知复合函数的表达式时,还可以用换元法求的解析式用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。如:已知复合函数f g(x)的解析式,求原函数f(
3、x)的解析式, 把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。实施换元后,应注意新变量的取值范围,即为函数的定义域.【例1】 已知,求【解析】令,则, 【例2】 已知求.解:设则则【例3】设,求.解:令又【例4】若 (1)在(1)式中以代替得即 (2)又以代替(1)式中的得: (3)【例5】设,求。解: (1)用来代替,得 (2)由【例6】已知,求.解:设,则 即代入已知等式中,得:四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法【例1】已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则 ,解得: ,点在上 , 把代入得:整理得,
4、(五)配凑法已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法但要注意所求函数的定义域不是原复合函数的定义域,而是的值域【例1】:已知求的解析式。分析:可配凑成 可用配凑法解:由 令 则 即当然,上例也可直接使用换元法令则得即 由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。【例2】:已知求.分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。解析:由 令 由即得 即:实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的内函数来表示出来,在通过整体换元。和换元法一样,最后结果要注明定义域。(
5、六)构造方程组法(消去法)。若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式构造方程组法适用的范围是:题高条件中,有若干复合函数与原函数混合运算,则要充分利用变量代换,然后联立方程组消去其余部分。【例3】:设满足求的解析式。分析:要求可消去,为此,可根据题中的条件再找一个关于与的等式,通过解方程组达到消元的目的。解析: 显然,,将换成得 .由消去,得小结:函数方程组法适用于自变量的对称规律。互为倒数,如f(x)、;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。【例4】已知,求.解:设,则 即代入已
6、知等式中,得:小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。【例5】设为偶函数,为奇函数,又试求的解析式【解析】为偶函数,为奇函数, 又 ,用替换得: 即 解 联立的方程组,得 , 七、特殊值法:(赋值类求抽象函数)当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式【例1】:设是定义在N上的函数,满足,对于任意正整数,均有,求.解:由,设得:即:在上式中,分别用代替,然后各式相加可得:【例2】设是定义在R上的函数,
7、且满足f(0)=1,并且对任意的实数x,y,有f(xy)= f(x) y(2xy+1),求f(x)函数解析式.分析:要f(0)=1,x,y是任意的实数及f(xy)= f(x) y(2xy+1),得到f(x)函数解析式,只有令x = y.解: 令x = y ,由f(xy)= f(x) y(2xy+1) 得f(0)= f(x) x(2xx+1),整理得 f(x)= x2+x+1.八利用给定的特性求解析式.【例1】设是偶函数,当x0时, ,求当x0时,的表达式.练习对xR, 满足,且当x1,0时, 求当x9,10时的表达式.九、累加法:累加法核心思想与求数列的通项公式相似。【例1】:若,且当,求.解
8、:递推得:以上个等式两边分别相加,得:十、归纳法:【例1】:已知,求.解:,依此类推,得再用数学归纳法证明之。【例2】:设,记,求.十一、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。【例1】 设是定义在上的函数,满足,对任意的自然数 都有,求【解析】,不妨令,得:,又 分别令式中的 得: 将上述各式相加得:, 十二、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.【例1】 已知是定义在R上的奇函数,当x0时,f(x)=2xx2,求f(x)函数解析式.解:y=f(x)是定义在R上的奇函数,
9、y=f(x)的图象关于原点对称.当x0时,f(x)=2xx2的顶点(1,1),它关于原点对称点(1,1), x0,x0.因此当x<0时,y=1= x2 +2x.故 f(x)=评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.十三、函数性质法利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。【例1】. 已知函数是R上的奇函数,当的解析式。解析:因为是R上的奇函数,所以,当,所以十四、反函数法利用反函数的定义求反函数的解析式的方法。【例1】. 已知函数,求它的反函数。解:因为,反函数为十五、“即时定义”法给出一个“即时定义”函数,根据这个定义求函数解析式的方
10、法。【例1】. 对定义域分别是的函数,规定:函数若,写出函数的解析式。十六 、微积分法:当你学了导数和微积分之后,就会用到,不过平时的考题还是比较少出现的,多见识下各种题型对你有帮助的。【例1】:设,求.解:因此 A、 B、十七:坐标转换法例7已知=,当且仅当点 (x。,y。)在y= 图像上时,点(2x。,2y。)在y = 图像上,求函数的解析式.解:设p(x, y)是函数y =图像上的任一点,由已知得点(,)在函数y=的图像上.即=,所以 y= 2故所求函数的解析式是, = 2.点评:抓住所求函数图像上的点与已知函数图像上的点的关系,再利用已知点满足已知函数,从而转换坐标,代入即可求得.;其
11、它相关题型1、定义法x例 1若 f (+ 1 = x + 2x ) ,求 f(x)。xx解: x + 2= (+ 1)2 - 1x f (+ 1) = (+ 1)2 - 1xx+ 1 1f(x)=x2+1(x1)2、配凑法例 2、已知 f (x +1) = x2 - 2x ,求 f (x) 解: f (x +1) = (x +1)2 - 2x -1- 2x= (x +1)2 - 4x -1= (x +1)2 - 4(x +1) + 3f (x) = x2 - 4x + 3 3、换元法例 3、已知 f(x + 1x + 1)=xx 2 + 1 +x 211 ,求 f(x)的解析式.x解: 设=
12、t ,则 x=xt - 1(t1),( 1 )2 +1f(t)=t - 1+1= 1+ (t - 1)2+(t1)= t2t+1( 1 )2t - 11t - 1故f(x)=x2x+1 (x1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域4、待定系数法例 4、已知二次函数 f(x)满足 f(0)=0,f(x+1)= f(x)+2x+8,求 f(x)的解析式.解:设二次函数 f(x)= ax2+bx+c,则 f(0)= c= 0 f(x+1)= a (x + 1)2 +b(x+1)= ax2+(2a+b)x+a+b 由 f(x+1)= f(x)+2x+8 与、 得ì2
13、a + b = b + 2îía + b = 8ìa = 1,í解得îb = 7.故 f(x)= x2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.5、直接图像法例 5函数在闭区间-1, 2 上的图象如右图所示,则求此函数的解析式。 yïo1ìx +1(-1 £ x < 0)解: f (x) = í- 1 x(0 £ x £ 2) 0îï 2-12 x-16、方程组法1例 6、 设函数 f(x)满足 f(x)+2 f(x)= x (x0),求 f(
14、x)函数解析式.1分析:欲求 f(x),必须消去已知中的 f(x个方程,联立方程组求解即可.11),若用x去代替已知中 x,便可得到另一解: f(x)+2 f()= x (x0)x11由代入得2f(x)+f(xx1)=(x0) x2x解 构成的方程组,得 f(x)=3x3(x0).7、特殊值法例 7、设是定义在 R 上的函数,且满足 f(0)=1,并且对任意的实数 x,y, 有 f(xy)= f(x) y(2xy+1),求 f(x)函数解析式.分析:要 f(0)=1,x,y 是任意的实数及 f(xy)= f(x) y(2xy+1),得到f(x)函数解析式,只有令 x = y.解: 令 x =
15、y ,由 f(xy)= f(x) y(2xy+1) 得f(0)= f(x) x(2xx+1),整理得 f(x)= x2+x+1.8、对称性图像法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式. 例 8、已知是定义在 R 上的奇函数,当 x0 时,f(x)=2xx2,求 f(x)函数解析式.解:y=f(x)是定义在 R 上的奇函数, y=f(x)的图象关于原点对称.当 x0 时,f(x)=2xx2 的顶点(1,1),它关于原点对称点(1,1),ì 2 x - x 2因此当 x<0 时,y= (x + 1)2 1= x2 +2x.故 f(x)=
16、7;î x 2 + 2 xx0, x0评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.9、利用奇偶性法相关练习(一)换元法1已知f(3x+1)=4x+3, 求f(x)的解析式. 2若,求.(二)配变量法3已知, 求的解析式. 4若,求.(三)待定系数法5设是一元二次函数, ,且,求与.6设二次函数满足,且图象在y轴上截距为1,在x轴上截得的线段长为,求的表达式.(四)解方程组法 7设函数是定义(,0)(0,+ )在上的函数,且满足关系式,求的解析式.8(1)若,求. (2)若f(x)+f(1-x)=1+x,求f(x).(五)特殊值代入法9若,且,求值.10已
17、知:,对于任意实数x、y,等式恒成立,求(六)利用给定的特性求解析式.11设是偶函数,当x0时, ,求当x0时,的表达式.12对xR, 满足,且当x1,0时, 求当x9,10时的表达式.例6、已知函数对于一切实数都有成立,且。(1)求的值;(2)求的解析式。.;求函数的解析式例1已知f (x)= ,求f ()的解析式 ( 代入法 / 拼凑法 )变式1已知f (x)= , 求f ()的解析式 变式2已知f (x+1),求f (x)的解析式 例2若f f (x)4x3,求一次函数f (x)的解析式 ( 待定系数法 )变式1已知f (x)是二次函数,且,求f (x)例3已知f (x)2 f (x)x ,求函数f (x)的解析式 ( 消去法/ 方程组法 )
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版多场景物联网技术应用合同3篇
- 2025年合资协议书参考样本
- 2025年劳动仲裁裁决和解协议
- 2025年加盟商业合同
- 2025年大数据智能分析合作协议
- 2025年冷藏海鮮運送合同
- 2025版团购合同范本四套全面团购服务条款与细则3篇
- 2025年创业投资协议解除协议
- 2025版信托投资公司绿色金融借款合同规范2篇
- 二零二五年度五人共同投资人工智能技术研发协议3篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 2024-2025学年八年级数学人教版上册寒假作业(综合复习能力提升篇)(含答案)
- 《万方数据资源介绍》课件
- 医生定期考核简易程序述职报告范文(10篇)
- 第一章-地震工程学概论
- 《中国糖尿病防治指南(2024版)》更新要点解读
- 交通运输类专业生涯发展展示
- 租赁汽车可行性报告
- 计算机辅助设计AutoCAD绘图-课程教案
- 老年护理学-老年人与人口老龄化-课件
评论
0/150
提交评论