版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第5讲 数列通项公式与前n项和高考预测一:等差等比公式法求和 1已知等比数列满足:,()求数列的通项公式;()是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由2记为等差数列的前项和已知(1)若,求的通项公式;(2)若,求使得的的取值范围高考预测二:裂项相消求和3已知各项均为正数的等比数列的前项和为,且,()若等差数列满足,求,的通项公式;()若_,求数列的前项和在;这三个条件中任选一个补充到第()问中,并对其求解4为数列的前项和,已知,(1)求通项公式;(2)设,数列的前项和,若,求整数值5记为数列的前项和已知,(1)求的通项公式;(2)设,求数列的前项和6已知数列为各项非零的等差
2、数列,其前项和为,满足()求数列的通项公式;()记,求数列的前项和7已知数列满足,数列满足,(1)证明数列为等比数列,并求数列的通项公式;(2)数列满足,求数列的前项和高考预测三:错位相减求和8已知数列满足为实数,且,且,成等差数列()求的值和的通项公式;()设,求数列的前项和9设等差数列的前项和为,且,(1)求数列的通项公式;(2)设数列满足,求数列的前项和10设等差数列的公差为前项和为,等比数列的公比为已知,(1)求数列,的通项公式;(2)当时,记,求数列的前项和高考预测四:分组求和11已知等差数列前10项的和是120,前20项的和是440(1)求的通项公式;(2)若等比数列的第2项和第5项分别是6和162,求数列的前项和12已知为数列的前项和,且,2,(1)求证:数列为等比数列:(2)设,求数列的前项和13设是等差数列,是等比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度奥迪汽车销售数据安全保障合同范本3篇
- 二零二五年度拍卖师职位聘请及服务合同4篇
- 二零二五年度民间借贷合同备案流程指南
- 二零二五年度民房租赁法律咨询与维权合同
- 二零二五年度会议场地绿化及布置服务保障合同
- 二零二五年度内衣品牌国际市场拓展与海外销售合同
- 2025年度大型活动安保团队聘用合同范本
- 2025版铝合金门窗安装施工合同2篇
- 2025年度虚拟现实技术研发中心个人技术合作合同3篇
- 二零二五年度智能门禁系统研发与销售合同4篇
- 2024年内蒙古自治区专业技术人员继续教育公需课考试答案
- 河道保洁服务投标方案(完整技术标)
- 品管圈(QCC)案例-缩短接台手术送手术时间
- 精神科病程记录
- 阅读理解特训卷-英语四年级上册译林版三起含答案
- 清华大学考博英语历年真题详解
- 人教版三年级上册口算题(全册完整20份 )
- 屋面及防水工程施工(第二版)PPT完整全套教学课件
- 2023年高一物理期末考试卷(人教版)
- 2023版押品考试题库必考点含答案
- 新生入学登记表
评论
0/150
提交评论