不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响_第1页
不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响_第2页
不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响_第3页
不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响_第4页
不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    不同供钾水平下na+对棉花幼苗根系生长和k、ca、mg、na含量的影响    胡泽彬+卜晶晶+王素芳+张志勇摘要:在水培条件下研究了不同nacl浓度(10.5和50.5 mmol/l)对不同钾供应水平(0.05和2.50 mmol/l)下棉花幼苗根系生长及k、ca、mg、na含量的影响。结果表明,0.05 mmol/l k条件下,nacl降低了根系中ca、k和mg含量,降低了k/na值,但两种浓度的nacl均显著提高了根系干物质量、根系总长度和表面积,其中直径0.2 mm的细根长度和表面积增加幅度最大,而2.50 mmol/l k条件下,仅10.

2、5mmol/l的nacl显著促进了根系总长度和表面积,但对根系干物质量没有显著影响,并且10.5 mmol/l的nacl显著降低了k/na值,而对ca、k和mg含量无显著影响。关键词:棉花幼苗;nacl胁迫;供钾水平;根系生长;钾、钠、钙、镁含量:s562.062;q945.78 :a :0439-8114(2014)19-4543-04doi:10.14088/ki.issn0439-8114.2014.19.009effects of na+ on root growth of cotton seedlings and contents of k,ca,mgunder different

3、potassium availabilityhu ze-bin,bu jing-jing,wang su-fang,zhang zhi-yong(school of life science and technology/cotton research institute, henan institute of science and technology, xinxiang 453003, henan,china)abstract: the effects of nacl with low concentration(10.5 and 50.5 mmol/l) on root growth

4、of cotton seedling and contents of k, ca, mg and na were studied under different k levels (0.05 and 2.5 mmol/l). under 0.05 mmol/l k, nacl reduced the contents of ca, k and mg and k/na value, but significantly increased weight of dry root and total root length and surface area. among which, fine roo

5、t with diameter0.2 mm was enhanced with the highest margin. under 2.5 mmol/l k, only 10.5 mmol/l nacl significantly increased total root length and surface area with no significant effects on weight of dry root. 10.5 mmol/l nacl significantly inhibited k/na value with no significant effects on conte

6、nts of ca, k and mg.key words: cotton seedlings; nacl stress; k level; root growth; k, na, ca, mg contents对动物而言,na是一种必需元素,在饮食中必须以相对大的数量存在。但是,按照arnon等1和epstein2对必需元素的定义,除特定的c4植物之外,na目前并没有显示是大多高等植物的必需元素。尽管na并没符合必需元素的要求,但在植物营养方面发挥着独特的作用。因此,在植物上,subbarao等3将na离子定义为功能性离子。棉花是喜k作物,k缺乏会降低纤维产量和品质4。同时,和玉米、大豆相比

7、,棉花对na的耐受性更强些5,6,但是大量研究也表明,盐渍化大幅度抑制了棉花的营养生长7,8。在整个生长发育周期中,在幼苗期棉花对盐最敏感9。随着世界人民对食物需求的增加和可耕地面积的减少,棉花种植向盐碱地转移。生产上,棉花经常早衰,在盐碱地上,这种情况更加严重。钾缺乏抑制了根系生长10,11,而na也抑制了根系生长12,13,但是钾缺乏时na对根系生长的作用目前尚未见报道。因此,在不同k供应水平条件下,研究了低浓度na对棉花幼苗根系生长和根系k、ca、mg和na含量的影响。1 材料与方法1.1 材料与方法供试材料为国审棉百棉1号(河南科技学院选育)。培养室培养条件:光照时间/黑暗时间为14

8、h/10 h,光照为350 mol/(m2·s),昼/夜温度为3033 / 2326 。挑选饱满的种子,用9%的双氧水消毒30 min后,取出用去离子水将种子冲洗干净,置于装有湿润沙子的盆钵中萌发,上面用塑料薄膜覆盖,并打少量孔以利通气,待子叶长出后,揭去薄膜,喷清水保持湿润,萌发1 d后从盆钵将萌发的幼苗转移到调整好的营养液中。盛放营养液的容器规格:长×宽×高为20 cm×13 cm×15 cm,容器的外层用铝泊纸包裹,其上有钻孔泡沫定植板,棉花幼苗用海绵包茎固定于泡沫板的孔洞中。待移栽后,在水培条件下培养,每天连续通气。营养液组成为:2.5

9、 mmol/l的ca(no3 )2,1 mmol/l的mgso4,0.5 mmol/l的nah2po4,2×10-4 mmol/l的cuso4,1×10-3 mmol/l的znso4,0.1mmol/l的edtafena,2×10-2 mmol/l的h3bo3,5×10-6 mmol/l的(nh4) 6mo7o24和1×10-3 mmol/l的mnso4和不同浓度的kcl和nacl。k处理设两个水平:低钾0.05 mmol/l和高钾2.50 mmol/l,两个钾浓度下,nacl处理设3个水平:0.5 mmol/l(ck),10.5 mmol/l

10、,50.5 mmol/l。 1.2 棉花幼苗干重、根系形态、根系矿质元素含量测定处理7 d后,选择大小、长势基本一致的幼苗用于棉花幼苗根干重、根系形态、矿质元素含量的测定。将整株幼苗的根系剪下,分散置于根系扫描盘中,利用根系扫描分析仪(epson perfection 4990 photo)透扫,将图像存为jpeg格式,用根系分析软件(winrhizo pro 2007)自动分析根系总长、表面积、体积等。根据根系直径,将根系分为细根(直径0.2 mm)、中根(0.2 mm直径0.45 mm)和粗根(直径>0.45 mm) 14。扫描后的根系在恒温烘箱中70 下烘干后称重。将烘干后的棉花幼

11、苗根系样品放入研钵中研磨,称取约0.1 g左右研磨后的棉花幼苗根系样品于样品瓶中,加入10 ml盐酸加盖拧紧,浸泡5 h后放置于hy-2往复振荡器上振荡30 min,提取上清液至事先编号的离心管中。采用电荷偶感等离子体发射光谱仪(型号pe-optima 2100 dv,usa)测定溶液中mg、na、ca和k的含量。1.3 试验设计和统计分析以培养盒为单位,1盒为1次重复。每处理设4次重复,每盒8株。每个处理取样6次重复。所有数据采用sas统计软件(8.0)的snk多重比较法进行统计分析。2 结果与分析2.1 不同钾供应水平下,nacl对棉花幼苗根系生长的影响如表1所示,在低k供应水平下,10.

12、5 mmol/l的nacl显著增加了棉花幼苗根系干物质量,50.5 mmol/l的nacl 进一步显著增加了棉花幼苗根系干物质量;在高k供应水平下,10.5 mmol/l的nacl对棉花幼苗根系干物质量没有影响,而50.5 mmol/l的nacl显著抑制了棉花幼苗根系干物质量。如表1所示,在低k供应水平下,nacl胁迫显著提高了根系总长度、表面积和体积,10.5 mmol/l 和50.5 mmol/l nacl条件下的根总长度、表面积、体积间差异不显著。在高k供应水平下,10.5 mmol/l nacl处理的根系总长度、表面积、体积均显著高于0.5和50.5 mmol/l nacl处理的根系总

13、长度、表面积、体积。2.2 不同钾供应水平下,nacl对棉花幼苗不同直径根生长的影响如表2所示,在低k供应水平下,nacl促进了细根和中根的根长度和根表面积,显著促进了粗根长度而对其表面积的增加没达到显著水平;50.5 mmol/l nacl 相对于10.5 mmol/l nacl,显著促进了细根长度而抑制了粗根长度,对细、中和粗根的表面积没有显著影响。在高k供应水平下,nacl对细根长度无显著影响,10.5 mmol/l nacl促进了中根和粗根的长度以及粗根的表面积。2.3 不同钾供应水平下,nacl对棉花幼苗根系中矿质元素含量的影响如表3所示,在低k供应水平下,与对照相比,10.5 mm

14、ol/l 显著抑制了钾的吸收和增加了na的吸收,对ca和mg吸收没有显著影响, 显著降低了k/na值; 50.5 mmol/l nacl显著抑制k、ca和mg的吸收和促进了na的吸收,显著降低了k/na值。在高k供应水平下,与对照相比, 10.5 mmol/l nacl对根系吸收矿质元素ca、mg、k、na的影响不显著,显著降低了k/na值;50.5 mmol/l nacl显著促进ca、mg和na的吸收而抑制了k的吸收,显著降低了k/na值。3 讨论k是植物代谢和生长所需要的大量元素15。na不仅在化学性质和结构方面与k相似,而且在某种程度上可以替代钾的许多功能,如内部渗透调节16。并且,已有

15、研究显示,na对生长有益,可以提高产量17-20,甚至改善品质21,22。但是,随着盐水平增加,棉花23和小麦24幼苗根系长度减少,两项研究中使用的最低nacl浓度分别是50和100 mmol/l。此次的研究结果表明,低钾条件下,nacl(10.5和50.5 mmol/l)促进了根系生长,显著提高了根系干物质量和根系总长度,根系总长度中,细根长度增加幅度最大,而高钾条件下,仅10.5 mmol/l显著促进了根系总长度,对根系干物质量没有显著影响。这表明,钾缺乏时,一定浓度的na可以替代钾的功能,促进根系的生长,但不一定是内部渗透调节功能替代,因为钾缺乏条件下,0.5 mmol/l na时,k和

16、na含量之和为39.7 mg/g(dw),而50.5 mmol/l na时,两者含量之和为36.1 mg/g(dw),两者之间无明显差异。na处理降低了k/na值,降低了缺钾条件下ca和mg的含量。同样,其他研究也表明,na增加降低了棉花根系和茎叶中k和ca的含量25。k和na选择性弱化和na诱导的k缺乏是盐胁迫条件下生长抑制和产量降低的主要原因26,也是随着盐水平增加k/na值降低的原因。na削弱ca吸收的原因或许是因为na置换了细胞膜中的ca和改变了膜的完整性27。在大多数植物中,离子积累具有毒性作用,打破了离子平衡28,离子毒性导致细胞膜不可逆转的损害29。k充分条件下,na增加却增加了

17、根系中ca和mg的含量,或许是因为na抑制了k的吸收,因为k是ca和mg吸收的强烈抑制剂19,30。参考文献:1 arnon d i, stout p r. the essentiality of certain elements in minute quantity for plants with special reference to copper j. plant physiology, 1939, 14(2): 371-375. 2 epstein e. mineral metabolisma. bonner j and varner j e. plant biochemistryc

18、. new york:academic press, 1965.3 subbarao g v, ito o, berry w l, et al. sodium-a functional plant nutrientj. critical reviews in plant sciences, 2003, 22(5): 391-416.4 cassman k g, kerby t a, roberts b a, et al. differential response of two cotton cultivars to fertilizer and soil potassium j. agron

19、omy journal, 1989, 81(6): 870-876.5 pearson g a. tolerance of crops to exchangeable sodium j. agriculture information bulletin, 1960, 216: 1-4.6 maas e v. crop salt tolerancea.tanji k k . agricultural assessment and managementc. new york :american society for civil engineers, 1990.7 khan a n, quresh

20、i r h, ahmad n. selection of cotton cultivars for salinity tolerance at seedling stagej. sarhad journal of agriculture, 1995, 1: 153-159.8 叶武威, 刘金定, 樊宝相, 等. 盐分(nacl)对陆地棉纤维性状的影响 j. 中国棉花, 1997, 24: 17-18.9 abui-naas a a, omran m s. salt tolerance of seventeen cotton cultivars during germination and ea

21、rly seedling development j. z ack pflanzenbau, 1974, 140: 229-236.10 armengaud p, breitling r, amtmann a. the potassium-dependent transcriptome of arabidopsis reveals a prominent role of jasmonic acid in nutrient signalingj. plant physiol, 2004, 136(1): 2556-2576.11 zhang z y, yang f q, li b, et al.

22、 coronatine-induced lateral-root formation in cotton (gossypium hirsutum) seedlings under potassium-sufficient and -deficient conditions in relation to auxinj. journal of plant nutrition and soil science, 2009, 172: 435-444.12 cramer g r, l?魧uchli a, epstein e. effects of nacl and cacl2 on ion activ

23、ities in complex nutrient solutions and root growth of cottonj. plant physiology, 1986, 81(3): 792-797.13 mai w x, tian c y, lo l. localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil j. jour

24、nal of arid land, 2014, 6(3): 361-370.14 张志勇, 王清连, 李召虎, 等. 缺钾对棉花幼苗根系生长的影响及其生理机制 j. 作物学报, 2009, 35(4): 718-723.15 hsiao t c, lauchli a. role of potassium in plant-water relationsa. advances in plant nutrition.vol 2c. new york:praeger scientific,1986.281-312.16 glenn e, pfister r, brown j j, et al. na

25、 and k accumulation and salt tolerance of atriplex canescens (chenopodiaceae) genotypesj. american journal of botany, 1996: 997-1005. 17 galeev r r. application of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficia

26、l element for crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. london:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soi

27、l science & plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consumption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j

28、 c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf tissue j. grass and forage science, 1999, 54(4): 297-311.23 chachar q i, solangi a g, verhoef a. influence of sodium chloride on seed germination and seedling root growth of cotton (gossypium hirsutum l.)j. pakistan jo

29、urnal of botany, 2008, 40(1): 183-197.24 almansouri m, kinet j m, lutts s. effect of salt and osmotic stresses on germination in durum wheat (triticum durum desf.) j. plant and soil, 2001, 231(2): 243-254.25 kent l m, l?魧uchli a. germination and seedling growth of cotton: salinity-calcium interactio

30、ns j. plant,cell & environment, 1985, 8(2): 155-159.26 grattan s r, grieve c m. mineral nutrient acquisition and response by plants grown in saline environmentsa. pessarakli m .handbook of plant and crop stressc. new york: marcel dekker, 1999.203-229.27 lynch j, cramer g r, lauchli a. salinity r

31、educes membrane-associated calcium in corn root protoplasts j. plant physiology, 1987, 83: 390-394.28 hasegawa p m, bressan r a, zhu j k, et al. plant cellular and molecular responses to high salinityj. annual review of plant biology, 2000, 51: 463-499.29 serrano r, gaxiola r. microbial models and s

32、alt stress tolerance in plants j. critical reviews in plant sciences, 1994, 13(2): 121-138.30 garcia m, daverede c, gallego p, et al. effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponicallyj. journal of plant nutrition, 1999, 22(3): 417-425. 17 galeev r r. applica

33、tion of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficial element for crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. l

34、ondon:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soil science & plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consu

35、mption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf tissue j. grass and forage science, 1999, 54(4): 297-311.23 chachar q i, s

36、olangi a g, verhoef a. influence of sodium chloride on seed germination and seedling root growth of cotton (gossypium hirsutum l.)j. pakistan journal of botany, 2008, 40(1): 183-197.24 almansouri m, kinet j m, lutts s. effect of salt and osmotic stresses on germination in durum wheat (triticum durum

37、 desf.) j. plant and soil, 2001, 231(2): 243-254.25 kent l m, l?魧uchli a. germination and seedling growth of cotton: salinity-calcium interactions j. plant,cell & environment, 1985, 8(2): 155-159.26 grattan s r, grieve c m. mineral nutrient acquisition and response by plants grown in saline envi

38、ronmentsa. pessarakli m .handbook of plant and crop stressc. new york: marcel dekker, 1999.203-229.27 lynch j, cramer g r, lauchli a. salinity reduces membrane-associated calcium in corn root protoplasts j. plant physiology, 1987, 83: 390-394.28 hasegawa p m, bressan r a, zhu j k, et al. plant cellu

39、lar and molecular responses to high salinityj. annual review of plant biology, 2000, 51: 463-499.29 serrano r, gaxiola r. microbial models and salt stress tolerance in plants j. critical reviews in plant sciences, 1994, 13(2): 121-138.30 garcia m, daverede c, gallego p, et al. effect of various pota

40、ssium-cacium ratios on cation nutrition of grape grown hydroponicallyj. journal of plant nutrition, 1999, 22(3): 417-425. 17 galeev r r. application of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficial element fo

41、r crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. london:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soil science &a

42、mp; plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consumption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论