2014年全国高考数学卷文科卷1试题及答案解析_第1页
2014年全国高考数学卷文科卷1试题及答案解析_第2页
2014年全国高考数学卷文科卷1试题及答案解析_第3页
2014年全国高考数学卷文科卷1试题及答案解析_第4页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、试卷第 1 页,总 6 页2014 年全国高考数学卷文科卷1 学校 :_姓名: _班级: _考号: _ 一、选择题(题型注释)1已知集合| 13 ,| 21mxxnxx,则mn()a. )1 ,2( b. )1 , 1( c. )3, 1 ( d. )3 ,2(2若0tan,则a. 0sin b. 0cos c. 02sin d. 02cos3设iiz11,则| za. 21 b. 22 c. 23 d. 24已知双曲线)0(13222ayax的离心率为 2,则aa. 2 b. 26 c. 25 d. 15设函数)(),(xgxf的定义域为r,且)(xf是奇函数,)(xg是偶函数,则下列结论中

2、正确的是a.)()(xgxf是偶函数 b. )(| )(|xgxf是奇函数c. | )(|)(xgxf是奇函数 d. | )()(|xgxf是奇函数6设fed,分别为abc的三边abcabc,的中点,则fceba.ad b. ad21 c. bc21 d. bc7在函数|2|cosxy,|cos|xy,)62cos( xy, )42tan( xy中,最小正周期为的所有函数为a. b. c. d. 8如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()试卷第 2 页,总 6 页a.三棱锥 b.三棱柱 c.四棱锥 d.四棱柱9执行右面的程序框图,若输入的, ,a b

3、 k分别为 1,2,3 ,则输出的m( )a.203 b.72 c.165 d.15810 已知抛物线 c :xy2的焦点为f,yxa00,是 c上一点,xfa045, 则x0()a. 1 b. 2 c. 4 d. 811已知函数32( )31f xaxx,若( )f x存在唯一的零点0 x,且00 x,则a的取值范围是(a)2,(b)1,(c), 2(d), 1试卷第 3 页,总 6 页二、填空题(题型注释)12设x,y满足约束条件,1,xyaxy且zxay的最小值为 7,则a(a)-5 (b)3 (c)-5 或 3 (d)5 或-313将 2 本不同的数学书和1 本语文书在书架上随机排成一

4、行,则2 本数学书相邻的概率为 _.14甲、乙、丙三位同学被问到是否去过a、b、c三个城市时,甲说:我去过的城市比乙多,但没去过b城市;乙说:我没去过c城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_.15设函数113,1,1,xexfxxx则使得2fx成立的x的取值范围是 _.16如图,为测量山高mn,选择a和另一座山的山顶c为测量观测点 . 从a点测得m点的仰角60man,c点的仰角45cab以及75mac;从c点测得60mca. 已知山高100bcm,则山高mn_m.三、解答题(题型注释)试卷第 4 页,总 6 页17已知na是递增的等差数列,2a,4a是方程2560 xx的

5、根。(i )求na的通项公式;(ii )求数列2nna的前n项和.18从某企业生产的某种产品中抽取100 件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组75 ,85)85 ,95)95 , 105)105,115)115,125)频数62638228(i )在答题卡上作出这些数据的频率分布直方图:(ii )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表) ;(iii)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于 95 的产品至少要占全部产品的80% ”的规定?19如图,三棱柱111cbaabc中,侧面ccbb

6、11为菱形,cb1的中点为o,且ao平面ccbb11.试卷第 5 页,总 6 页(1)证明:;1abcb(2)若1abac, 1,601bccbb求三棱柱111cbaabc的高 .20已知点)2,2(p,圆c:0822yyx,过点p的动直线l与圆c交于ba,两点,线段ab的中点为m,o为坐标原点 .(1) 求m的轨迹方程;(2) 当omop时,求l的方程及pom的面积21设函数21ln12afxaxxbx a,曲线11yfxf在点,处的切线斜率为0求 b; 若存在01,x使得01afxa,求 a 的取值范围。22如图,四边形abcd是的内接四边形,ab的延长线与dc的延长线交于点e,且cbce

7、.(i )证明:de;(ii )设ad不是的直径,ad的中点为m,且mbmc,证明:ade为等边三角形 .23已知曲线194:22yxc,直线tytxl222:(t为参数)写出曲线c的参数方程,直线l的普通方程;试卷第 6 页,总 6 页过曲线c上任意一点p作与l夹角为 30的直线,交l于点a,求pa的最大值与最小值 .24若,0,0 ba且abba11(i )求33ba的最小值;(ii )是否存在ba,,使得632ba?并说明理由 .本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 1 页,总 16 页参考答案1b【解析】试题分析:根据集合的运算法则可得:| 11mnxx,即选b考

8、点:集合的运算2c【解析】试题分析:由sintan0cos,可得:sin,cos同正或同负,即可排除 a和 b,又由sin22sincos,故sin20.考点:同角三角函数的关系3b【解析】试题分析:根据复数运算法则可得:111111(1)(1)222iiziiiiiii, 由 模 的 运 算 可 得 :22112|( )()222z.考点:复数的运算4d【解析】试题分析:由离心率cea可得 :222232aea,解得:1a考点:复数的运算本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 2 页,总 16 页5c【解析】试题分析:由函数)(),(xgxf的定义域为r,且)(xf是奇函

9、数,)(xg是偶函数,可得:|( ) |fx和|( )|g x均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选c考点:函数的奇偶性6a【解析】试题分析:根据平面向量基本定理和向量的加减运算可得:在bef中,12ebeffbefab,同理12fcfeecfeac,则11111()()()()22222ebfcefabfeacabacabacad考点:向量的运算7a【解析】试题分析:中函数是一个偶函数,其周期与cos2yx相同,22t; 中函数|cos|xy的周期是函数cosyx周期的一半, 即t; 22t; 2t,则选 a考点:三角函数的图象和性质8b【解析】试题分析:

10、根据三视图的法则:长对正,高平齐,宽相等可得几何体如下图所示本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 3 页,总 16 页考点:三视图的考查9d【解析】试 题 分 析 : 根 据 题 意 由13成 立 , 则 循 环 , 即1331,2 ,2222mabn; 又 由23成 立 , 则 循 环 , 即28382,33323mabn; 又 由33成 立 , 则 循 环 , 即331 581 5,428838mabn; 又由43不成立,则出循环,输出158m考点:算法的循环结构10a【解析】试题分析:根据抛物线的定义: 到焦点的距离等于到准线的距离,又 抛 物 线 的 准 线方 程

11、 为 :14x, 则 有 :01|4afx, 即 有001544xx,可解得01x考点:抛物线的方程和定义11c【解析】试题分析:根据题中函数特征,当0a时,函数2( )31f xx显然 有 两 个 零 点 且 一 正 一 负 ; 当0a时 , 求 导 可 得 :2( )363 (2)fxaxxx ax,利用导数的正负与函数单调性的关系可本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 4 页,总 16 页得:(,0)x和2(,)xa时函数单调递增 ; 2(0)xa,时函数单调递减 , 显 然 存 在 负 零 点 ; 当0a时 , 求 导 可 得 :2( )363 (2)fxaxxx

12、 ax,利用导数的正负与函数单调性的关系可得:2(,)xa和(0,)x时函数单调递减 ; 2(0)xa,时函数单调递增,欲要使得函数有唯一的零点且为正,则满足:2()0(0)0faf,即得:3222()3()10aaa,可解得:24a,则2(,2aa舍去)考点:1. 函数的零点 ;2. 导数在函数性质中的运用;3. 分类讨论的运用12b【解析】试题分析: 根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:11(,)22aaa,又由题中zxay可知,当0a时, z有最小值:21121222aaaaza,则22172aa,解得:3a;当0a时,z 无最小值故选b考点:线性规划的应用1323

13、【解析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 5 页,总 16 页试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数 2,语; 数 1,语,数 2; 数 2,数 1,语 ; 数 2,语,数 1;语,数 2,数 1; 语,数 1,数 2 共有 6 种,其中 2 本数学书相邻的有 4 种,则其概率为:42p63考点:古典概率的计算14a【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:a城市b城市c城市甲去过没去去过乙去过没去没去丙去过可能可能可以得出结论乙去过的城市为:a考点:命题的逻辑分析15(,8【解析】试题分析:由于题中所给是一个分段函数,

14、则当1x时,由12xe,可解得:1ln 2x,则此时:1x; 当1x时,由132x,可解得:328x,则此时:18x,综合上述两种情况可得:(,8x考点: 1. 分段函数 ;2. 解不等式本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 6 页,总 16 页16150【解析】试题分析:根据题意,在abc中,已知0045 ,90 ,100cababcbc,易得:1002ac; 在amc中,已知0075 ,60 ,1002macmcaac,易得:045amc,由正弦定理可解得:sinsinacamamcacm,即:100231003222am; 在amn中,已知0060 ,90 ,100

15、3manmnaam, 易得:150mnm.考点: 1. 空间几何体 ;2. 仰角的理解 ;3. 解三角形的运用17 (1)112nan; (2)1422nnns.【解析】试题分析:(1)根据题中所给一元二次方程2560 xx,可运用因式分解的方法求出它的两根为2,3 ,即可得出等差数列中的242,3aa,运用等差数列的定义求出公差为d,则422aad,故12d,从而132a. 即可求出通项公式; (2)由第( 1)小题中已求 出 通项 ,易 求出 :1222nnnan, 写 出它 的前n 项 的形式:23134122222nnnnns, 观察此式特征,发现它是一个差比数列,故可采用错位相减的方

16、法进行数列求和,即两边同乘12,即:34121341222222nnnnns,将两式相减可得:23412131112()222222nnnns123112(1)4422nnn,所以1422nnns.试 题 解 析 : ( 1) 方 程2560 xx的两 根 为2,3 , 由 题 意 得本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 7 页,总 16 页242,3aa.设数列na的公差为 d,则422aad,故12d,从而132a.所以na的通项公式为112nan.(2)设2nna的前 n 项和为ns,由( 1)知1222nnnan,则23134122222nnnnns,341213

17、41222222nnnnns.两式相减得23412131112()222222nnnns123112(1)4422nnn所以1422nnns.考点:1. 一元二次方程的解法;2. 等差数列的基本量计算;3. 数列的求和18 (1)(2)质量指标值的样本平均数为100,质量指标值的样本方差为 104(3)不能认为该企业生产的这种产品符合“质量指标值不低于本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 8 页,总 16 页95 的产品至少要占全部产品80% ”的规定 .【解析】试题分析:(1)根据频率分布表与频率分布直方图的关系,先根据:频率 =频数总数计算出各组的频率,再根据:高度=

18、频率组距计算出各组的高度, 即可以组距为横坐标高度为纵坐标作出频率分布直方图 ;(2)根据题意欲计算样本方差先要计算出样本平均数,由平均数计算公式可得:质量指标值的样本平均数为80 0.0690 0.26100 0.38 110 0.22 120 0.08100 x, 进而由方差公式可得:质量指标值的样本方差为22222( 20)0.06( 10)0.2600.38100.22200.08104s; (3)根据题意可知质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68,由于该估计值小于0.8 ,故不能认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占

19、全部产品 80% ”的规定 .试题解析:(1)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 9 页,总 16 页(2)质量指标值的样本平均数为80 0.0690 0.26100 0.38 110 0.22 120 0.08100 x.质量指标值的样本方差为22222( 20)0.06( 10)0.2600.38100.22200.08104s.所以这种产品质量指标值(3)质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68,由于该估计值小于0.8 ,故不能认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品80% ”的规定 .考点:

20、1. 频率分布表 ;2. 频率分布直方图 ;3. 平均数与方差的计算19 (1)详见解析 ; (2)三棱柱111abca b c的高为217.【解析】试题分析: (1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1bc,则 o为1b c与1bc的交点,又因为侧面11bb c c为菱形,对角线相互垂直11b cbc;又ao平面11bb c c,所以1b cao,根据线面垂直的判定定理可得:1b c平面 abo ,结合线面垂直的性质:由于ab平面 abo ,故1b cab; (2)要求三菱柱的高,根据题中已知条件可转化为先求点 o到平面 abc的距离,即:作o

21、dbc,垂足为 d,连结ad ,作o ha d, 垂足为 h, 则由线面垂直的判定定理可得oh平面 abc ,再根据三角形面积相等:oh adod oa,可求出oh的长度,最后由三棱柱111abca b c的高为此距离的两倍即可确定出本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 10 页,总 16 页高试题解析:(1)连结1bc,则 o为1b c与1bc的交点 . 因为侧面11bbc c为菱形,所以11b cbc.又ao平面11bbc c,所以1b cao,故1b c平面 abo.由于ab平面 abo ,故1b cab.(2)作odbc,垂足为 d,连结 ad ,作ohad,垂足

22、为 h.由于,bcod,故bc平面 aod ,所以ohbc,又ohad,所以oh平面 abc.因为0160cbb, 所以1cbb为等边三角形, 又1bc, 可得34od.由于1acab,所以11122oab c,由ohadod oa,且2274adodoa,得2114oh,又 o为1b c的中点,所以点1b到平面 abc的距离为217.故三棱柱111abca b c的高为217.考点:1. 线线,线面垂直的转化 ;2. 点到面的距离 ;3. 等面积法的应用20 (1)22(1)(3)2xy;(2)l的方程为1833yx; pom的面本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 1

23、1 页,总 16 页积为165.【解析】试题分析: (1)先由圆的一般方程与标准方程的转化可将圆c的方程可化为22(4)16xy,所以圆心为(0,4)c,半径为 4,根据求曲 线 方 程 的 方法 可 设( , )m x y, 由 向量 的 知 识 和 几何 关 系 :0cmmp, 运用向量数量积运算可得方程:22(1)(3)2xy;(2)由第(1)中所求可知 m的轨迹是以点(1,3)n为圆心,2为半径的圆,加之题中条件| |opom,故 o在线段 pm的垂直平分线上,又 p在圆 n上,从而onpm,不难得出l的方程为1833yx; 结合面积公式可求又pom的面积为165.试题解析:(1)圆c

24、 的方程可化为22(4)16xy,所以圆心为(0, 4)c,半径为 4,设( , )m x y,则( ,4)cmx y,(2,2)mpxy,由题设知0cmmp, 故( 2) (4 ) ( 2) 0 xxyy, 即22(1)(3)2xy.由于点 p在圆 c的内部,所以m的轨迹方程是22(1)(3)2xy.(2)由(1)可知 m的轨迹是以点(1,3)n为圆心,2为半径的圆 .由于| |opom,故 o在线段 pm的垂直平分线上, 又 p在圆 n上,从而onpm.因为 on的斜率为 3,所以l的斜率为13,故l的方程为1833yx.又| |2 2opom,o到l的距离为4 105,4 10|5pm,

25、所以pom的面积为165.考点:1. 曲线方程的求法 ;2. 圆的方程与几何性质;3. 直线与圆的本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 12 页,总 16 页位置关系21 (1)1b; (2)(21, 21)(1,).【解析】试题分析: (1)根据曲线在某点处的切线与此点的横坐标的导数的对应关系,可先对函数进行求导可得:( )(1)afxa xbx,利用上述关系不难求得(1)0f,即可得1b;(2)由第(1)小题中所求 b,则函数( )fx完全确定下来, 则它的导数可求出并化简得:1( )(1)1()(1)1aaafxa xxxxxa根据题意可得要对1aa与1的大小关系进

26、行分类讨论,则可分以下三类:()若12a,则11aa,故当(1,)x时,( )0fx,( )f x在(1,)单调递增,所以,存 在01x, 使 得0()1af xa的 充 要 条 件 为(1)1afa, 即1121aaa,所以2121a. ()若112a,则11aa,故当(1,)1axa时,( )0fx;当(,)1axa时,( )0fx,( )f x在(1,)1aa单调递减,在(,)1aa单调递增 . 所以,存在01x,使得0()1af xa的充要条件为()11aafaa,无解则不合题意 .()若1a, 则11(1)1221aaafa. 综 上 , a的 取 值 范 围 是(21,21)(1,

27、).试题解析:(1)( )(1)afxa xbx,由题设知(1)0f,解得1b.(2)( )f x的定义域为(0,),由( 1)知,21( )ln2af xaxxx,1( )(1)1()(1)1aaafxa xxxxxa()若12a,则11aa,故当(1,)x时,( )0fx,( )f x在(1,)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 13 页,总 16 页单调递增,所以,存在01x,使得0()1af xa的充要条件为(1)1afa,即1121aaa,所以2121a.()若112a,则11aa,故当(1,)1axa时,( )0fx;当(,)1axa时,( )0fx,( )

28、f x在(1,)1aa单调递减, 在(,)1aa单调递增 .所以,存在01x,使得0()1af xa的充要条件为()11aafaa,而2()ln112(1)11aaaaafaaaaaa,所以不合题意 .()若1a,则11(1)1221aaafa.综上, a 的取值范围是(21,21)(1,).考点: 1. 曲线的切线方程;2. 导数在研究函数性质中的运用;3.分类讨论的应用22 (1)详见解析 ; (2)详见解析【解析】试题分析:(1)根据题意可知a,b,c,d四点共圆,利用对角互补的四边形有外接圆这个结论可得:dcbe,由已知得cbee,故de; (2)不妨设出 bc的中点为 n,连结 mn

29、 ,则由mbmc,由等腰三角形三线合一可得:mnbc,故 o在直线 mn上,又 ad不是圆 o的直径, m为 ad的中点,故omad,即mnad, 所以/ /adbc, 故ac b e, 又c b ee, 故ae,由( 1)知,de,所以ade为等边三角形 .本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第 14 页,总 16 页试题解析:(1)由题设知 a,b,c,d四点共圆,所以dcbe,由已知得cbee,故de.(2)设 bc的中点为 n,连结 mn ,则由mbmc知mnbc,故 o在直线 mn上.又 ad不是圆 o的直径, m为 ad的中点,故omad,即mnad.所以/ /adbc,故acbe,又cbee,故ae.由( 1)知,de

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论