版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复数【知识梳理】1、 复数的基本概念1、虚数单位的性质叫做虚数单位,并规定:可及实数进行四则运算;这样方程就有解了,解为或2、复数的概念(1)定义:形如(a,bR)的数叫做复数,其中叫做虚数单位,a叫做,b叫做。全体复数所成的集合叫做复数集。复数通常用字母表示,即(a,bR)对于复数的定义要注意以下几点:(a,bR)被称为复数的代数形式,其中表示及虚数单位相乘复数的实部和虚部都是实数,否则不是代数形式(2)分类:满足条件(a,b为实数)复数的分类abi为实数b0abi为虚数b0abi为纯虚数a0且b0例题:当实数为何值时,复数是实数?虚数?纯虚数?2、 复数相等也就是说,两个复数相等,充要条件
2、是他们的实部和虚部分别相等注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小例题:已知求的值3、 共轭复数及共轭的共轭复数记作,且4、 复数的几何意义1、 复平面的概念建立直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。2、 复数的几何意义复数及复平面内的点及平面向量是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量)相等的向量表示同一个复数例题:(1)当实数为何值时,复平面内表示复数的点位于第三象限;位于直线上(2)复平面内,已知,求对应的复数3、 复数的模:向量的
3、模叫做复数的模,记作或,表示点到原点的距离,即,若,则表示到的距离,即例题:已知,求的值5、 复数的运算(1)运算法则:设z1abi,z2cdi,a,b,c,dR(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的几何意义,即,.6、 常用结论(1),求,只需将除以4看余数是几就是的几次例题:【思考辨析】判断下面结论是否正确(请在括号中打“”或“×”)(1)方程x2x10没有解.()(2)复数zabi(a,bR)中,虚部为bi.()(3)复数中有相等复数的概念,因此复数可以比较大小.()(4)原点是实轴及虚轴的交
4、点.()(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.()【考点自测】1.(2019·安徽)设i是虚数单位,则复数(1i)(12i)等于()A.33i B.13i C.3i D.1i2.(2019·课标全国)已知复数z满足(z1)i1i,则z等于()A.2i B.2i C.2i D.2i3.在复平面内,复数65i,23i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.48i B.82i C.24i D.4i4.已知a,bR,i是虚数单位.若ai2bi,则(abi)2等于()A.34i B.34i C.43i D.4
5、3i5.已知(12i)43i,则z_.【题型分析】题型一复数的概念例1(1)设i是虚数单位.若复数za(aR)是纯虚数,则a的值为()A.3 B.1 C.1 D.3(2)已知aR,复数z12ai,z212i,若为纯虚数,则复数的虚部为()A.1 B.i C.D.0(3)若z1(m2m1)(m2m4)i(mR),z232i,则“m1”是“z1z2”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件引申探究1.对本例(1)中的复数z,若|z|,求a的值.2.在本例(2)中,若为实数,则a_.思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以
6、转化为复数的实部及虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为abi(a,bR)的形式,以确定实部和虚部.(1)若复数z(x21)(x1)i为纯虚数,则实数x的值为()A.1 B.0 C.1 D.1或1(2)(2019·浙江)已知i是虚数单位,a,bR,则“ab1”是“(abi)22i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2(1)(2019·湖北)i为虚数单位,i607的共轭复数为()A.i B.i C.1 D.
7、1(2)(2019·北京)复数i(2i)等于()A.12i B.12i C.12i D.12i命题点2复数的除法运算例3(1)(2019·湖南)已知1i(i为虚数单位),则复数z等于()A.1i B.1i C.1i D.1i(2)()6_.命题点3复数的运算及复数概念的综合问题例4(1)(2019·天津)i是虚数单位,若复数(12i)(ai)是纯虚数,则实数a的值为_.(2)(2019·江苏)已知复数z(52i)2(i为虚数单位),则z的实部为_.命题点4复数的综合运算例5(1)(2019·安徽)设i是虚数单位,表示复数z的共轭复数.若z1i,
8、则i·等于()A.2 B.2i C.2 D.2i(2)若复数z满足(34i)z|43i|,则z的虚部为()A.4 B.C.4 D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式. (3)复数的运算及复数概念的综合题,先利用复数的运算法则化简,一般化为abi(a,bR)的形式,再结合相关定义解答.(4)复数的运算及复数几何意义的综合题.先利用复数的运算法则化简,一般化
9、为abi(a,bR)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2019·山东)若复数z满足i,其中i为虚数单位,则z等于()A.1i B.1i C.1i D.1i(2)2 016_.(3)2 016_.题型三复数的几何意义例6(1)(2019·重庆)实部为2,虚部为1的复数所对应的点位于复平面的()A.第一象限 B.第二象限C.第三象限D.第四象限(2)ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|zz1|zz2|zz3|,则z对应的点
10、为ABC的()A.内心 B.垂心C.重心 D.外心思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()A.A B.B C.C D.D(2)已知z是复数,z2i、均为实数(i为虚数单位),且复数(zai)2在复平面内对应的点在第一象限,求实数a的取值范围.【思想及方法】解决复数问题的实数化思想典例已知x,y为共轭复数,且(xy)23xyi46i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的基本形式表示出来;(2)利用复数相
11、等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x、y用复数的基本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法及技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数zabi(a,bR)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是复数问题转化为实数问题的主要方法.对于一个复数zabi(a,bR),既要从整体的角度去认识它,把复数看成一个整体,又要从实部
12、、虚部的角度分解成两部分去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法则,其方向是应注意的问题,平移往往和加法、减法相结合.【失误及防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意复数的虚部是指在abi(a,bR)中的实数b,即虚部是一个实数.【巩固练习】1.(2019·福建)若(1i)(23i)abi(a,bR,i是虚数单位),则a,b的值分别等于()A.3,2 B.3,2C.3,3 D.1,42.设zi,则|z|等于()A.B.C. D.23.(2019·课标全国)若a为实数,且(2ai)(
13、a2i)4i,则a等于()A.1 B.0 C.1 D.24.若i为虚数单位,图中复平面内点Z表示复数z,则表示复数的点是()A.EB.FC.GD.H5.(2019·江西)是z的共轭复数,若z2,(z)i2(i为虚数单位),则z等于()A.1i B.1i C.1i D.1i6.(2019·江苏)设复数z满足z234i(i是虚数单位),则z的模为_.7.若abi(a,b为实数,i为虚数单位),则ab_.8.复数(3i)m(2i)对应的点在第三象限内,则实数m的取值范围是_.9.计算:(1);(2);(3);(4).10.复数z1(10a2)i,z2(2a5)i,若1z2是实数,
14、求实数a的值.【能力提升】11.复数z1,z2满足z1m(4m2)i,z22cos (3sin )i(m,R),并且z1z2,则的取值范围是()A.1,1 B. C. D.12.设f(n)nn(nN*),则集合f(n)中元素的个数为()A.1 B.2 C.3 D.无数个13.已知复数zxyi,且|z2|,则的最大值为_.14.设aR,若复数z在复平面内对应的点在直线xy0上,则a的值为_.15.若1i是关于x的实系数方程x2bxc0的一个复数根,则b_,c_.【巩固练习参考答案】1A. 2.B. 3.B. 4.D. 5.D. 6. 7.3. 8.m<.9.解(1)13i.(2)i.(3)1.(4)i.10.解1z2(a210)i(2a5)i(a210)(2a5)i(a22a15)i.1z2是实数,a22a150,解得a5或a3.又(a5)(a1)0,a5且a1,故a3.11.解析由复数相等的充要条件可得化简得44cos23sin ,由此可得4cos23si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04年房地产开发项目承包合同
- 2024年度物流服务合同(国际运输)
- 04年仓储物流合作框架合同
- 2024年度新能源技术研发与合作协议
- 2024年度收藏品买卖合同
- 2024年度店铺合同纠纷解决与法律咨询合同
- 2024年度不锈钢水箱产品召回与赔偿合同
- 电梯光幕维修合同模板
- 2024年度房屋租赁合同中的消防安全条款
- 澳门业务合同范例
- 经典房地产营销策划培训(全)
- 儿童视力保护培训课件
- 实验室仪器设备管理操作指南场景版
- 码头经营方案
- 人教版数学四年级上册第五单元 《平行四边形和梯形》 大单元作业设计
- 玻璃制品行业员工转正汇报
- 送教上门体育、健康教案教学内容
- 公安机关执法执勤规范用语
- 科学人教鄂教版六年级上册全册分层练习含答案
- 新时代十年生态文明建设成就
- 《信息科技》学科新课标《义务教育信息科技课程标准(2022年版)》
评论
0/150
提交评论