下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一个是符合题目要求的1(5分)设集合M=x|1x2,集合N=x|1x3,则MN=()Ax|1x3Bx|1x2Cx|1x3Dx|1x22(5分)设向量=(2,4)与向量=(x,6)共线,则实数x=()A2B3C4D63(5分)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A抽签法B系统抽样法C分层抽样法D随机数法4(5分)设a,b为正实数,则“ab1”是“log2alog2b0”
2、的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件5(5分)下列函数中,最小正周期为且图象关于原点对称的函数是()Ay=cos(2x+)By=sin(2x+)Cy=sin2x+cos2xDy=sinx+cosx6(5分)执行如图所示的程序框图,输出s的值为()ABCD7(5分)过双曲线x2=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()AB2C6D48(5分)某食品保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系y=ekx+b (e=2.718为自然对数的底数,k,b为常数)若该食品在0的保鲜时间是192小时,在22的保鲜时间是
3、48小时,则该食品在33的保鲜时间是()A16小时B20小时C24小时D28小时9(5分)设实数x,y满足,则xy的最大值为()ABC12D1610(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x5)2+y2=r2(r0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A(1,3)B(1,4)C(2,3)D(2,4)二、填空题:本大题共5小题,每小题5分,共25分11(5分)设i是虚数单位,则复数i= 12(5分)lg0.01+log216的值是 13(5分)已知sin+2cos=0,则2sincoscos2的值是 14(5分)在三棱住ABCA1B1C
4、1中,BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是 15(5分)已知函数f(x)=2x,g(x)=x2+ax(其中aR)对于不相等的实数x1、x2,设m=,n=现有如下命题:对于任意不相等的实数x1、x2,都有m0;对于任意的a及任意不相等的实数x1、x2,都有n0;对于任意的a,存在不相等的实数x1、x2,使得m=n;对于任意的a,存在不相等的实数x1、x2,使得m=n其中的真命题有 (写出所有真命题的序号)三、解答题:本大题共6小题,共75分解答应写出文字说明、
5、证明过程或演算步骤16(12分)设数列an(n=1,2,3)的前n项和Sn,满足Sn=2ana1,且a1,a2+1,a3成等差数列()求数列an的通项公式;()设数列的前n项和为Tn,求Tn17(12分)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位()若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法下表给出
6、其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451 ()若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率18(12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示()请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)()判断平面BEG与平面ACH的位置关系并说明你的结论()证明:直线DF平面BEG19(12分)已知A、B、C为ABC的内角,tanA,tanB是关于方程x2+pxp+1=0(pR)两个实根()求C的大小()若AB=3,AC=,求p的值20(13分)如图,椭圆E:=1
7、(ab0)的离心率是,点P(0,1)在短轴CD上,且=1()求椭圆E的方程;()设O为坐标原点,过点P的动直线与椭圆交于A、B两点是否存在常数,使得+为定值?若存在,求的值;若不存在,请说明理由21(14分)已知函数f(x)=2xlnx+x22ax+a2,其中a0()设g(x)是f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一个是符合题目要求的1(5分)设集合M=x|1x2,集合
8、N=x|1x3,则MN=()Ax|1x3Bx|1x2Cx|1x3Dx|1x2【分析】根据并集的定义解答即可【解答】解:根据并集的定义知:MN=x|1x3,故选:A【点评】本题考查了并集运算,熟练掌握并集的定义是解题的关键2(5分)设向量=(2,4)与向量=(x,6)共线,则实数x=()A2B3C4D6【分析】利用向量共线的充要条件得到坐标的关系求出x【解答】解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B【点评】本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=ym3(5分)某学校为了了解三年级、六年级、
9、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A抽签法B系统抽样法C分层抽样法D随机数法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理故选:C【点评】本小题考查抽样方法,主要考查抽样方法,属基本题4(5分)设a,b为正实数,则“ab1”是“log2alog2b0”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不
10、必要条件【分析】先求出log2alog2b0的充要条件,再和ab1比较,从而求出答案【解答】解:若log2alog2b0,则ab1,故“ab1”是“log2alog2b0”的充要条件,故选:A【点评】本题考察了充分必要条件,考察对数函数的性质,是一道基础题5(5分)下列函数中,最小正周期为且图象关于原点对称的函数是()Ay=cos(2x+)By=sin(2x+)Cy=sin2x+cos2xDy=sinx+cosx【分析】求出函数的周期,函数的奇偶性,判断求解即可【解答】解:y=cos(2x+)=sin2x,是奇函数,函数的周期为:,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶
11、函数,周期为:,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2,所以D不正确;故选:A【点评】本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力6(5分)执行如图所示的程序框图,输出s的值为()ABCD【分析】模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k4,计算并输出S的值为【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k4,k=3不满足条件k4,k=4不满足条件k4,k=5满足条件k4,S=sin=
12、,输出S的值为故选:D【点评】本题主要考查了循环结构的程序框图,属于基础题7(5分)过双曲线x2=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()AB2C6D4【分析】求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|【解答】解:双曲线x2=1的右焦点(2,0),渐近线方程为y=,过双曲线x2=1的右焦点且与x轴垂直的直线,x=2,可得yA=2,yB=2,|AB|=4故选:D【点评】本题考查双曲线的简单性质的应用,考查基本知识的应用8(5分)某食品保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系y=ekx+b (e=2.718为自
13、然对数的底数,k,b为常数)若该食品在0的保鲜时间是192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是()A16小时B20小时C24小时D28小时【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出ek,eb的值,运用指数幂的运算性质求解e33k+b即可【解答】解:y=ekx+b (e=2.718为自然对数的底数,k,b为常数)当x=0时,eb=192,当x=22时e22k+b=48,e22k=e11k=eb=192当x=33时,e33k+b=(ek)33(eb)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解
14、即可,注意整体求解9(5分)设实数x,y满足,则xy的最大值为()ABC12D16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可【解答】解:作出不等式组对应的平面区域如图;由图象知y102x,则xyx(102x)=2x(5x)2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A【点评】本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键10(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x5)2+y2=r2(r0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A(1,3)B(
15、1,4)C(2,3)D(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1y2)=4(x1x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=,所以x0=3,即M的轨迹是直线x=3将x=3代入y2=4x,得y2=12,2,M在圆上,(x05)2+y02=r2,r2=y02+412+4=16,直线l恰有4条,y00,4r216,故2r4时
16、,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2r4,故选:D【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题二、填空题:本大题共5小题,每小题5分,共25分11(5分)设i是虚数单位,则复数i=2i【分析】直接利用复数的运算法则求解即可【解答】解:复数i=i=i+i=2i故答案为:2i【点评】本题考查复数的基本运算,考查计算能力12(5分)lg0.01+log216的值是2【分析】直接利用对数的运算法则化简求解即可【解答】解:lg0.01+log216=2+4=2故答案为:2【点评】本题考查对数的运算法则的应用,考查计算能力13
17、(5分)已知sin+2cos=0,则2sincoscos2的值是1【分析】已知等式移项变形求出tan的值,原式利用同角三角函数间的基本关系化简,将tan的值代入计算即可求出值【解答】解:sin+2cos=0,即sin=2cos,tan=2,则原式=1,故答案为:1【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键14(5分)在三棱住ABCA1B1C1中,BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是【分析】判断三视图对应的几何体的形状,画出图
18、形,利用三视图的数据,求解三棱锥PAMN的体积即可【解答】解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,底面积为,所求三棱锥的高为NP=1,三棱锥底面积是三棱柱底面三角形的,所求三棱锥PA1MN的体积是:=故答案为:【点评】本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力15(5分)已知函数f(x)=2x,g(x)=x2+ax(其中aR)对于不相等的实数x1、x2,设m=,n=现有如下命题:对于任意不相等的实数x1、x2,都有m0;对于任意的a及任意不相等的实数x1、x
19、2,都有n0;对于任意的a,存在不相等的实数x1、x2,使得m=n;对于任意的a,存在不相等的实数x1、x2,使得m=n其中的真命题有(写出所有真命题的序号)【分析】运用指数函数的单调性,即可判断;由二次函数的单调性,即可判断;通过函数h(x)=x2+ax2x,求出导数判断单调性,即可判断;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断【解答】解:对于,由于21,由指数函数的单调性可得f(x)在R上递增,即有m0,则正确;对于,由二次函数的单调性可得g(x)在(,)递减,在(,+)递增,则n0不恒成立,则错误;对于,由m=n,可得f(x1)f(x2)=g(x1)g(x2),即
20、为g(x1)f(x1)=g(x2)f(x2),考查函数h(x)=x2+ax2x,h(x)=2x+a2xln2,当a,h(x)小于0,h(x)单调递减,则错误;对于,由m=n,可得f(x1)f(x2)=g(x1)g(x2),考查函数h(x)=x2+ax+2x,h(x)=2x+a+2xln2,对于任意的a,h(x)不恒大于0或小于0,则正确故答案为:【点评】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤16(12分)设数列an(n=1,2,3)的前n项和Sn,满足Sn=2ana
21、1,且a1,a2+1,a3成等差数列()求数列an的通项公式;()设数列的前n项和为Tn,求Tn【分析】()由条件Sn满足Sn=2ana1,求得数列an为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列an的通项公式()由于=,利用等比数列的前n项和公式求得数列的前n项和Tn【解答】解:()由已知Sn=2ana1,有an=SnSn1=2an2an1(n2),即an=2an1(n2),从而a2=2a1,a3=2a2=4a1又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2所以,数列an是首项为2
22、,公比为2的等比数列故an=2n()由()得=,所以Tn=+=1【点评】本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题17(12分)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位()若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法下表给出其中两种坐法,
23、请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513241532541()若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率【分析】()根据题意,可以完成表格;()列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率【解答】解:()余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541()若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为 乘客 P1 P2 P3 P4 P5 座位号 2 1 3 4 5 2 3 1 4 5 2 3 4 1 5 2 3 4 5
24、 1 2 3 5 4 1 2 4 3 1 5 2 4 3 5 1 2 5 3 4 1于是,所有可能的坐法共8种,设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)=答:乘客P5坐到5号座位的概率是【点评】本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键18(12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示()请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)()判断平面BEG与平面ACH的位置关系并说明你的结论()证明:直线DF平面BEG【分析】()直接标出点F,G,H的位置()先证BCHE为平行四边形,可知BE平面A
25、CH,同理可证BG平面ACH,即可证明平面BEG平面ACH()连接FH,由DHEG,又DHEG,EGFH,可证EG平面BFHD,从而可证DFEG,同理DFBG,即可证明DF平面BEG【解答】解:()点F,G,H的位置如图所示()平面BEG平面ACH,证明如下:ABCDEFGH为正方体,BCFG,BC=EH,又FGEH,FG=EH,BCEH,BC=EH,BCHE为平行四边形BECH,又CH平面ACH,BE平面ACH,BE平面ACH,同理BG平面ACH,又BEBG=B,平面BEG平面ACH()连接FH,ABCDEFGH为正方体,DHEG,又EG平面EFGH,DHEG,又EGFH,EGFH=O,EG
26、平面BFHD,又DF平面BFHD,DFEG,同理DFBG,又EGBG=G,DF平面BEG【点评】本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题19(12分)已知A、B、C为ABC的内角,tanA,tanB是关于方程x2+pxp+1=0(pR)两个实根()求C的大小()若AB=3,AC=,求p的值【分析】()由判别式=3p2+4p40,可得p2,或p,由韦达定理,有tanA+tanB=p,tanAtanB=1p,由两角和的正切函数公式可求tanC=tan(A+B)=,结合C的范围即可求C的值()由正弦定理可求sinB=,
27、解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=(tanA+tanB)的值【解答】解:()由已知,方程x2+pxp+1=0的判别式:=(p)24(p+1)=3p2+4p40,所以p2,或p由韦达定理,有tanA+tanB=p,tanAtanB=1p所以,1tanAtanB=1(1p)=p0,从而tan(A+B)=所以tanC=tan(A+B)=,所以C=60°()由正弦定理,可得sinB=,解得B=45°,或B=135°(舍去)于是,A=180°BC=75°则tanA=tan75°=tan(45
28、176;+30°)=2+所以p=(tanA+tanB)=(2+)=1【点评】本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题20(13分)如图,椭圆E:=1(ab0)的离心率是,点P(0,1)在短轴CD上,且=1()求椭圆E的方程;()设O为坐标原点,过点P的动直线与椭圆交于A、B两点是否存在常数,使得+为定值?若存在,求的值;若不存在,请说明理由【分析】()通过e=、=1,计算即得a=2、b=,进而可得结论;()分情况对直线AB斜率的存在性进行讨论:当直线AB的斜率存在时,联立直线AB与椭圆方程,利用
29、韦达定理计算可得当=1时+=3;当直线AB的斜率不存在时,+=3【解答】解:()根据题意,可得C(0,b),D(0,b),又P(0,1),且=1,解得a=2,b=,椭圆E的方程为:+=1;()结论:存在常数=1,使得+为定值3理由如下:对直线AB斜率的存在性进行讨论:当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx2=0,=(4k)2+8(1+2k2)0,x1+x2=,x1x2=,从而+=x1x2+y1y2+x1x2+(y11)(y21)=(1+)(1+k2)x1x2+k(x1+x2)+1=2当=1时,2=3,此时+=3为定值;当直线AB的斜率不存在时,直线AB即为直线CD,此时+=+=21=3;故存在常数=1,使得+为定值3【点评】本题考查椭圆的标准方程、直线方程等基础知识,考查推理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医药生物行业投资策略报告:看好创新和出海关注基本面向上细分赛道-国元证券
- 光伏智能跟踪支架建议书可行性研究报告备案
- 中国结肠镜行业市场深度分析及发展前景预测报告
- 项目开发总结报告(合集五)
- 方型太阳能警示桩行业行业发展趋势及投资战略研究分析报告
- 商场项目可行性报告
- 2024河南其他电气机械及器材制造市场前景及投资研究报告
- 2025年秋千项目可行性研究报告
- 2025年半导体封装行业研究报告(附下载)
- 2025办公设备维修合同
- 居民健康档案管理培训课件
- 班主任经验交流PPT
- 宾馆应急救援预案
- 光谱报告格式
- 英法核动力装置
- GB/T 41837-2022温泉服务温泉水质要求
- YS/T 79-2006硬质合金焊接刀片
- 考研考博-英语-山东师范大学押题密卷附带答案详解篇
- 中医诊疗器具清洗消毒(医院感染防控专家课堂培训课件)
- 药厂生产车间现场管理-PPT课件
- 轴与孔标准公差表
评论
0/150
提交评论