版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北京工业大学20092010年度第一学期概率论与数理统计考试试卷(工类,a卷)学号 姓名 得分题号一二(1)二(2)二(3)二(4)二(5)得分一. 填空题(每空两分,共30分)1. 已知p(a)=0.5,p(ab)=0.8,且a与b相互独立,则p(a-b)= 0.2 , p()= 0.8 。2. 设随机变量x服从参数是的泊松分布,且p(x=3)=2p(x=4),则= 2 , p(x1)= 1-3e-2 。3. 设连续型随机变量x的概率密度函数为:,且x01p0.50.5p(xa)=p(xa),则a= 2-1/4 。4. 若随机变量x和y相互独立,且有相同的概率分布z01p0.250.75则随
2、机变量z=maxx,y的概率分布 v=minx,y的概率分布v01p0.750.25u01p0.750.25u=xy的概率分布5. 设随机变量xb(n,p),已知e(x)=3,var(x)=2.4,则n= 15 ,p= 0.2 。6. 设x1,x2,xn为独立同分布的随机变量,且x1n(0,1),则。e= n 。var= 2n 。7. 设x1,x2,x3是正态总体的随机样本,其中已知,未知,在中,是统计量的有 8. 已知一批零件的长度x(单位:cm)服从正态分布n(,1),从中随机抽取16个零件,得到长度的平均值为40cm,则的置信系数为0.95的置信区间为。二、计算题(每题14分)注意:每题
3、要写出计算过程,无过程的不得分!1. 钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是40%、35%和25%。而掉在上述三个地方被找到的概率分别是0.8、0.3和0.1。试求:(1). 钥匙被找到的概率。(2). 已知钥匙被找到了,在此条件下,求钥匙是掉在宿舍的概率。解:设事件a1为“钥匙掉在宿舍里”,a2为“钥匙掉在教室里”,a3为“钥匙掉在路上”。 事件b为“找到钥匙”。 则p(a1)= 0.4,p(a2)= 0.35,p(a3)= 0.25, (1) p(b|a1)= 0.8,p(b|a2)= 0.3,p(b|a3)= 0.1,(1) p(b)= p(a1)p(b|a1)+ p(a
4、2)p(b|a2)+ p(a3)p(b|a3)= 0.4×0.8 + 0.35×0.3 + 0.25×0.1 = 0.45 (2) 2. 设随机变量x的概率密度函数为:(1). 确定常数a。(2). 求y=3-x的概率密度函数f(y)。(3). 求e(y),var(y)。解:(1)由概率密度函数的性质:知:(2)因为y的可能取值区间为(2,4),且y=g(x)= 3-x 在区间(-1,1)上为严格递减的函数,其反函数为x=h(y)= 3-y,且h(y)= -1,所以y=3-x的密度函数为:(3) 3. 设二维连续型随机变量(x,y)的联合概率密度函数为:(1).
5、求x,y的边缘概率密度函数,并判断x和y是否相互独立。(2). 求e(x+ye(y),var(2x+3y)。(3). 求z=x+y的概率密度函数。解:(1)x,y的边缘概率: 因为,所以x,y相互独立。 (2)因为x,y相互独立, (3)因为x,y相互独立,则: 4设简单随机样本x1,x2,xn来自总体x:其中,为未知参数。(1). 求参数,的矩估计;(2). 求参数,的极大似然估计。解:(1)先计算总体均值与方差: 由此可以推出: 从而得到参数的矩估计为: (2)似然函数为:其对数似然函数为:由上式可以看出,对数似然函数是 的单调函数,要使其最大,的取值应该尽可能的大,由于限制,所以的极大似然估计为:将对数似然函数关于求导并令其为0,得到关于的似然方程:5从一批钢管中抽取10根,测得其内径(单位:mm)为: 100.36,100.31,99.99,100.11,100.64,100.85,99.42,99.91,99.35,100.10。设这批钢管内径服从正态分布,试在检验水平=0.05下,分别检验下列假设是否成立.(1). 已知=0.5。(2). 未知。附 正态分布表: z0.025=1.96, z0.05=1.645。附 分布表:解:(1)当时,应采用z检验,此时检验的拒绝域为:。取查表得:z0.025=1.9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 梅州市城市骑行安全保障方案
- 2024苗木购销合同书范本
- 2024市场场地租赁合同范文
- 新入职教师评估与反馈方案
- 老旧烟囱改造与拆除施工方案
- 重型机械安全使用制度
- 2025版高中数学一轮复习课时作业梯级练六十四随机抽样课时作业理含解析新人教A版
- 2024-2025学年新教材高中政治第二单元世界多极化5.1中国外交政策的形成与发展学案新人教版选择性必修1
- 2024-2025学年高中语文课时跟踪训练11游褒禅山记含解析新人教版必修2
- 高中历史第2单元工业文明的崛起和对中国的冲击第7课新航路的开辟教师用书岳麓版必修2
- MOOC 高等数学(上)-西北工业大学 中国大学慕课答案
- 无人机测试与评估标准
- 碧桂园的财务风险分析与防范措施
- 2024年江西吉安市城市建设投资开发有限公司招聘笔试参考题库含答案解析
- (高清版)WST 813-2023 手术部位标识标准
- 《眼科与视功能检查》-2.视力检查课件(实操)
- 冶金煤气安全生产培训课件
- 工会劳动竞赛方案
- 集合论和逻辑
- 审查易系统操作指南
- 拼音四线三格A4打印版
评论
0/150
提交评论