复数的加减乘除演示教学_第1页
复数的加减乘除演示教学_第2页
复数的加减乘除演示教学_第3页
复数的加减乘除演示教学_第4页
复数的加减乘除演示教学_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复数的加减乘除l教学目标教学目标:掌握复数的代数形式的加、减运算.掌握复数的代数形式的乘、除运算.l教学重点教学重点:复数的代数形式的加、减运算及乘除运算。共轭复数的概念.l教学难点教学难点:乘除运算 .三、知识新授:三、知识新授:1.复数加减法的运算法则:复数加减法的运算法则: 运算法则运算法则: :设复数设复数z z1 1=a+bi,z=a+bi,z2 2=c+di=c+di, , 即即: : 两个复数相加两个复数相加( (减减) )就是实部与实部,就是实部与实部, 虚部与虚部分别相加虚部与虚部分别相加( (减减).).那么:那么:z1+z2=(a+c)+(b+d)i; z1- z2=(a

2、-c) +(b-d)i.(2)(2)复数的加法满足复数的加法满足交换律交换律、结合律结合律, ,即对任何即对任何z z1 1,z,z2 2,z,z3 3C,C,有有: :z z1 1+z+z2 2=z=z2 2+z+z1 1, ,(z(z1 1+z+z2 2)+z)+z3 3=z=z1 1+(z+(z2 2+z+z3 3).).2.复数的乘法:复数的乘法:(1)(1)复数乘法的法则复数乘法的法则 复数的乘法与多项式的乘法是类似的复数的乘法与多项式的乘法是类似的, ,但必须在所得的结果中把但必须在所得的结果中把i i2 2换成换成-1,-1,并且把实并且把实部合并部合并. .即即: :(a+bi

3、)(c+di)=ac+bci+adi+bdi(a+bi)(c+di)=ac+bci+adi+bdi2 2=(ac-bd)+(bc+ad)i=(ac-bd)+(bc+ad)i. . (2) (2) 复数的乘法满足复数的乘法满足交换律交换律、结合律结合律以及乘法对以及乘法对 加法的加法的分配律分配律. . 即对任何即对任何z z1 1,z,z2 2,z,z3 3有:有: z z1 1z z2 2=z=z2 2z z1 1; ; (z (z1 1z z2 2)z)z3 3=z=z1 1(z(z2 2z z3 3);); z z1 1(z(z2 2+z+z3 3)=z)=z1 1z z2 2+z+z1

4、 1z z3 3. .(1)定义定义: 实部相等实部相等, ,虚部互为相反数虚部互为相反数的两个复数互为的两个复数互为共轭复数共轭复数. .虚部不为虚部不为0 0的两个共轭复数也叫共轭虚的两个共轭复数也叫共轭虚数。数。复数复数 z= =a+ +bi 的共轭复数记作的共轭复数记作, zzabi即即3. 共轭复数的概念、性质:共轭复数的概念、性质: zz22222)()(baibabiabia思考:设思考:设z= =a+ +bi ( (a, ,bR ),R ),那么那么 zz4 4、复数的除法法则、复数的除法法则 先把除式写成分式的形式先把除式写成分式的形式, ,再把分子再把分子与分母都乘以分母的

5、共轭复数与分母都乘以分母的共轭复数, ,化简后化简后写成代数形式写成代数形式( (分母实数化分母实数化).).即即dicbiadicbia)()()()(dicdicdicbia22)()(dciadbcbdac分母实分母实数化数化复数四则运算:设复数z1=a+bi,z2=c+di,那么:z1+z2= z1-z2=. z1z2 = z1z2=(a+c)+(b+d)i(a-c) +(b-d)i(ac-bd)+(bc+ad)i22)()(dciadbcbdac公式背诵公式背诵学学 以以 致致 用用四:讲解例题四:讲解例题 例例1 计算计算(56 )( 2)(34 )iii-+ - -+(5 6)

6、( 2 ) (3 4)(5 2 3) ( 6 1 4)11iiiii-+ - - - +=- - + - - -=-解:解: 23: 1 34342 1iii例 计算(3)(1 2 )(34 )( 2)iii 2 01 5i (112 )( 2)ii (3)(12 )(34 )( 2)iii2iiii2864322241122iii例例3.3.计算计算)43()21 (ii解解:五:巩固提升五:巩固提升:1、设:、设:z=1+i, 求求 ( )22zzA(-1-i) B(-1+i) C(1-i) D (1+i)总结与启迪:总结与启迪:两个复数相加减,只需实部、虚部分别相加减即两个复数相加减,只

7、需实部、虚部分别相加减即可;两个复数相乘,通常按多项式乘法的运算法可;两个复数相乘,通常按多项式乘法的运算法则进行,注意最后应把实部和虚部分开;两个复则进行,注意最后应把实部和虚部分开;两个复数相除,一般先把分子和分母同乘以分母的共轭数相除,一般先把分子和分母同乘以分母的共轭复数,再将分子按照多项式乘法的运算法则进行复数,再将分子按照多项式乘法的运算法则进行运算,最后再把实部和虚部分开。运算,最后再把实部和虚部分开。D2、若、若z是纯虚数,是纯虚数, 是实数,是实数, 那么那么z等于(等于( )iz12A 2i B i C -i D -2iD总结与启迪:总结与启迪:本题考察了复数的除法运算以及

8、一个复数是实本题考察了复数的除法运算以及一个复数是实数、纯虚数的条件。正确理解相关概念,掌握数、纯虚数的条件。正确理解相关概念,掌握复数的除法运算是解决问题的关键。复数的除法运算是解决问题的关键。练习:练习:1、若、若 则ab的值为( )),(271Rbabiaii-32、若复数z满足:z(1+i)=1-i (i是虚数单位),则共轭复数_zi总结与启迪:总结与启迪:两复数相等的充要条件是这两复数的实部相等,两复数相等的充要条件是这两复数的实部相等,并且虚部相等。并且虚部相等。六、课堂小结:六、课堂小结:1.复数运算法则:(1)设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i.z z1z2=(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i. .dicbiadicbia)()(22)()(dciadbcbdac2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论