版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、不等式及不等式组知识点归纳一、不等式的概念1不等式:用不等号表示不等关系的式子,叫做不等式。2不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。3不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。4解不等式:求不等式的解集的过程,叫做解不等式。5用数轴表示不等式的解集。二、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3不等式两边都乘以(或除以)同一个负数,不等号的方向改变。说明:在一元一次不等
2、式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。例:1已知不等式3x-a0的正整数解恰是1,2,3,则a的取值范围是。2已知关于x的不等式组无解,则a的取值范围是。3不等式组的整数解为。4如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a的值为。5已知关于x的不等式组的解集为,那么a的取值范围是。6当时,代数式的值不大于零7.若<,则(用“>”“=”或“”号填空)8.不等式>,
3、的正整数解是9.不等式>的解集为<,则10.若>>,则不等式组的解集是11.若不等式组的解集是<<,则的值为12.有解集<<的不等式组是(写出一个即可)13.一罐饮料净重约为g,罐上注有“蛋白质含量”其中蛋白质的含量为 _g14.若不等式组的解集为>,则的取值范围是三、一元一次不等式(重点)1一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1例:一、 判断题(
4、每题1分,共6分)1、 ab,得ambm ( )2、 由a3,得a ( )3、 x = 2是不等式x34的解 ( )4、 由1,得a ( )5、 如果ab,c0,则ac2bc2 ( )6、 如果ab0,则1 ( )二、 填空题(每题2分,共34分)1、若ab,用“”号或“”号填空:a5b5;12a12b;6a6b;2、x及3的和不小于6,用不等式表示为;3、当x时,代数式2x3的值是正数;4、代数式2x的不大于8的值,那么x的正整数解是;5、如果x75,则x;如果0,那么x;6、不等式axb的解集是x,则a的取值范围是;7、一个长方形的长为x米,宽为50米,如果它的周长不小于280米,那么x应
5、满足的不等式为;8、点A(5,y1)、B(2,y2)都在直线y = 2x上,则y1及y2的关系是;9、如果一次函数y =(2m)xm的图象经过第一、二、四象限,那么m的取值范围是;四、一元一次不等式组(难点)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。3、求不等式组的解集的过程,叫做解不等式组。4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共
6、部分,即这个不等式组的解集。例:一、选择题1下列不等式组中,是一元一次不等式组的是() A B C D2下列说法正确的是() A不等式组的解集是5<x<3 B的解集是3<x<2 C的解集是x=2 D的解集是x33不等式组的最小整数解为() A1 B0 C1 D44在平面直角坐标系中,点P(2x6,x5)在第四象限,则x的取值范围是() A3<x<5 B3<x<5 C5<x<3 D5<x<35不等式组的解集是() Ax>2 Bx<3 C2<x<3 D无解二、填空题6若不等式组有解,则m的取值范围是_7
7、已知三角形三边的长分别为2,3和a,则a的取值范围是_8将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_个儿童,分_个橘子9若不等式组的解集是1<x<1,则(a+b)2019=_三、解答题10解不等式组11若不等式组无解,求m的取值范围12为节约用电,某学校于本学期初制定了详细的用电计划如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?易错
8、点分析:易错点1:误认为一元一次不等式组的“公共部分”就是两个数之间的部分例1 解不等式组错解:由,得x1,由,得x2,所以不等式组的解集为2x1错因剖析:解一元一次不等式组的方法是先分别求出不等式组中各个不等式的解集,再利用数轴求出这些不等式解集的公共部分此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集)实际上,这两部分没有“公共部分”,也就是说此不等式组无解,而所谓“公共部分”的解是指“两线重叠”的部分此外,有些同学可能会受到解题顺序的影响,把解集表示成1x2或2x1等,这些都是错误的正解:由,得x1由,得x2,所以此不等式组无解易错点2:误认为“同向解集哪个表
9、示范围大就取哪个”例2解不等式组错解:解不等式,得x解不等式,得x5由于x的范围较大,所以不 等式组的解集为x错因剖析:本例错解中,由于对不等式组的解集理解得不深刻,在根据两个解集的范围确定不等式组的解集时,形成错误的认识其实在求两个一元一次不等式组成的不等式组的解集时,可归纳为以下四种基本类型(设ab), 利用数可确定它们的解集分别为 xb,xa,axb,空集也可以用下面的口诀来帮助记忆,“同大取大,同小取小,大小小大中间取,大大小小取不了(空集)”正解:解不等式,得x解不等式,得x5所以不等式组的解集为x5易错点3:混淆解一元一次不等式组和解二元一次方程组的方法例3解不等式组错解:由,得2
10、x14,即x7,所以不等式组的解集为x7错因剖析:本例错在将解一元一次不等式组和解二元一次方程组的方法混淆,误将解二元一次方程组中的加减消元法用在解一元一次不等式组中产生此类错误的根本原因是没有正确区分解一元一次不等式组和解二元一次方程组的不同点,(1)解二元一次方程组时,两个方程不是单独存在的;(2)由两个一元一次不等式组成的不等式组的解集,可归纳为“独立解,集中到”,即独立地解不等式组中的每一个不等式组中的每一个不等式,在解的过程中,各不等式彼此不发生关系,“组”的作用在最后,即每一个不等式的解集都要求出来后,再利用数轴从“公共部分”的角度去求“组”的解集正解:由不等式,得x17,即x由不
11、等式,得x3,即 x所以原不等式组的解集为x易错点4:在去分母时,漏乘常数项例4 解不等式组错解:由,得x2在x212x的两边同乘2,得x122x于是有x,所以原不等式组的解集为2x错因剖析:解一元一次不等式组,需要先求出每一个不等式的解,最后找出它们的公共部分对不等式进行变形时,一定要使用同解变形,不然就容易出错本例的解答过程中没有掌握不等式的运算性质,在去分母时漏乘了中间的一项此外,还要注意在表示“大小小大中间取”这类不等式的解集时应按一般顺序,把小的那个数放在前面,大的那个数放在后面,用“”连接正解:由,得x2在2x的两边同乘2,得x142x于是有x1,所以原不等式组的解集为1x2易错点
12、5:忽视不等式两边同乘(或除以)的数的符号,导致不等式方向出错例5解关于x的不等式(a)x12a错解:去分母,得(12a)x2(12a)将不等式两边同时除以(12a),得x2错因剖析:在利用不等式的性质解不等式时,如果不等式两边同乘(或除以)的数是含字母的式子,应注意讨论含字母的式子的符号本例中不等式两边同乘(或除以)的(12a),在不确定取值符号的情况下进行约分,所以出错正解:将不等式变形,得(12a)x2(12a)(1)当12a0时,即a时,x2;(2)当12a0时,即a时,不等式无解;(3)当12a0时,即a时,x2例6 如果关于x的不等式(2ab)xa5b0的解集是x,则关于x的不等式
13、axb的解集是_错解:因为不等式(2ab)xa5b0的解集是x,所以,则有解得从而知axb的解集是x错因剖析:本题错因有两个,一是忽视了原不等式的不等号方向及解集的不等号方向正好相反;二是对含有字母系数的不等式没有根据解集的情况确定字母系数的取值范围,所以在解题时错误得出解得从而错误得到axb的解集是x正解:由不等式(2ab)xa5b0的解集是x,得解得所以axb的解集是x易错点6:寻找待定字母的取值范围时易漏特殊情况例7 若关于x的不等式组无解,则a的取值范围是_错解:由得又因为不等式组无解,所以a的取值范围是a3错因剖析:由已知不等式的解集确定不等式组的解集时,可按“同大取大,同小取小,大
14、小小大中间取,大大小小取不了”的基本规律求解,但当已知不等式组的解集而求不等式的解集中待定字母取值范围时则不能完全套用此规律,还应考虑特例,即a3,有x3及 x3,而此时不等式组也是无解的因此,本题错在没有考虑待定字母的取值范围的特殊情况正解:由得又因为不等式组无解,所以a的取值范围是a3例8 已知关于x的不等式组的整数解共有5个,则 a的取值范围是_错解:由解得又因为原不等式组的整数解共有5个,所以ax2,这 5个整数解为3,2,1,0,1,从而有a3(或a3)错因剖析:本题主要考查同学们是否会运用逆向思维解决含有待定字母的一元一次不等式组的特解上述解法错在忽视ax2中有5个整数解时,a虽不
15、唯一,但也有一定的限制,a的取值范围在3及4之间,其中包括3,但不应包括4,所以错解在确定 a的取值范围时扩大了解的范围正解:由解得又因为原不等式组的整数解共有5个,所以ax2又知这5个整数解为3,2,1,0,1故a的取值范围是4a3总之,对于解一元一次不等式(组)问题,我们要深刻领会一元一次不等式(组)的基础知识,熟悉这6个易错点,牢固地掌握一元一次不等式(组)的解法和步骤,从而远离解一元一次不等式(组)的错误深渊中考考点解读:1. (2019山东滨州3分)不等式的解集是【 】A BC D空集【答案】A。【考点】解一元一次不等式组。【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解
16、集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。因此, 解得,解得。按同大取大,得不等式组的解集是:故选A。2. (2019山东滨州3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟他家离学校的距离是2900米如果他骑车和步行的时间分别为分钟,列出的方程是【 】ABCD【答案】D。【考点】由实际问题抽象出二元一次方程组。【分析】李明同学骑车和步行的时间分别为分钟,由题意得:李明同学到学校共用时15分钟,所以得方程:。李明同学骑自行车的平均速度是250米
17、/分钟,分钟骑了250米;步行的平均速度是80米/分钟,分钟走了80米。他家离学校的距离是2900米,所以得方程:。故选D。3. (2019山东德州3分)已知,则a+b等于【 】A3 B C2 D1【答案】A。【考点】解二元一次方程组。【分析】两式相加即可得出4a+4b=12,方程的两边都除以4即可得出答案:a+b=3。故选A。4.(2019山东东营3分)方程有两个实数根,则k的取值范围是【 】A k1 B k1 C k>1 D k<1【答案】D。【考点】一元二次方程的意义和根的判别式。【分析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程。此方程有两个实数根,解得
18、:k1。综上k的取值范围是k1。故选D。5. (2019山东菏泽3分)已知是二元一次方程组的解,则的算术平方根为【 】A±2BC2D 4【答案】C。【考点】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根。【分析】是二元一次方程组的解,解得。即的算术平方根为2。故选C。6. (2019山东莱芜3分)对于非零的实数a、b,规定ab若2(2x1)1,则x【 】A B C D【答案】A。【考点】新定义,解分式方程。【分析】ab,2(2x1)1,2(2x1)。 检验,合适。故选A。7. (2019山东莱芜3分)已知m、n是方程x22x10的两根,则代数式的值为【 】A9 B
19、177;3 C3 D5【答案】C。【考点】一元二次方程根及系数的关系,求代数式的值。【分析】m、n是方程x22x10的两根,mn=,mn=1。 。故选C。8. (2019山东临沂3分)用配方法解一元二次方程时,此方程可变形为【 】A B C D 【答案】D。【考点】配方法解一元二次方程。【分析】。故选D。9. (2019山东临沂3分)不等式组的解集在数轴上表示正确的是【 】ABCD【答案】A。【考点】解一元一次不等式组,在数轴上表示不等式的解集。【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(
20、无解)。因此,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数及不等式的个数一样,那么这段就是不等式组的解集有几个就要几个。在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示。因此,在数轴上表示为:故选A。10. (2019山东临沂3分)关于x、y的方程组的解是 ,则的值是【 】A5B3C2D1【答案】D。【考点】二元一次方程组的解和解二元一次方程组,求代数式的值。【分析】方程组的解是,。故选D。11. (2019山东日照4分)已知关于x的一元二次方程(k2)2x2(2
21、k1)x1=0有两个不相等的实数根,则k的取值范围是【 】(A) k>且k2 (B)k且k2 (C) k >且k2 (D)k且k2【答案】C。【考点】一元二次方程根的判别式,一元二次方程的定义。【分析】方程为一元二次方程,k20,即k2。方程有两个不相等的实数根,0,(2k1)24(k2)20,即(2k12k4)(2k12k4)0,5(4k3)0,k。k的取值范围是k且k2。故选C。12. (2019山东日照4分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不
22、足4盒,但至少1盒.则这个敬老院的老人最少有【 】(A)29人 (B)30人 (C)31人 (D)32人【答案】B。【考点】一元一次不等式组的应用。【分析】设这个敬老院的老人有x人,则有牛奶(4x28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组: , 解得:29x32。x为整数,x最少为30。故选B。13. (2019山东泰安3分)将不等式组的解集在数轴上表示出来,正确的是【 】ABC D【答案】C。【考点】解一元一次不等式组,在数轴上表示不等式的解集。【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国团购行业当前经济形势及投资建议研究报告
- 2024-2030年中国喷水织机行业供需趋势及投资策略分析报告
- 2024年物流外包合作协议增补3篇
- 2024年煤炭交易市场诚信体系建设购销运输合同范本3篇
- 2024年版针对配偶出轨的婚姻解除合同版B版
- 微专题盖斯定律的高阶应用-2024高考化学一轮考点击破
- 吕梁职业技术学院《数字营销》2023-2024学年第一学期期末试卷
- 2024年某城市关于垃圾分类处理服务合同
- 2024年物业项目托管合同
- 漯河食品职业学院《移动营销设计》2023-2024学年第一学期期末试卷
- 农村集体经济组织内部控制制度
- 《接触网施工》课件 5.1.2 避雷器安装
- 第二届全国技能大赛珠宝加工项目江苏省选拔赛技术工作文件
- 淮阴工学院《供应链管理3》2022-2023学年第一学期期末试卷
- 2025年计算机等级考试一级计算机基础及MS Office应用试卷及解答参考
- 小学五年级上册语文 第一单元 语文要素阅读(含解析)
- 2024年广东公需科目答案
- ABB工业机器人基础知识
- 中国校服产业挑战与机遇分析报告 2024
- 2022版义务教育物理课程标准
- 山东省日照市2023-2024学年七年级上学期期末数学试题(含答案)
评论
0/150
提交评论