高中数学6.3.2方差与标准差教案苏教版必修_第1页
高中数学6.3.2方差与标准差教案苏教版必修_第2页
高中数学6.3.2方差与标准差教案苏教版必修_第3页
高中数学6.3.2方差与标准差教案苏教版必修_第4页
高中数学6.3.2方差与标准差教案苏教版必修_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第24课时 方差与标准差 【学习导航】 学习要求 1体会方差与标准差也是对调查数据的一种简明的描述,要求熟练记忆公式,并能用于生产实际和科学实验中;2体会方差与标准差对数据描述中的异同。 【课堂互动】自学评价案例 有甲乙两种钢筋现从中各抽取一个样本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125甲110120130125120125135125135125乙115100125130115125125145125145哪种钢筋的质量较好?【分析】 在平均数相同的情况下,观察上述数据表,发现乙样本的最小值100低于甲样本的最小值110,最大值145高于甲

2、样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定在平均数相同的情况下,比较两组数据的极差能大概判断它们的稳定程度极差: 我们把一组数据的最大值与最小值的差称为极差从数据表上可以看出,乙的极差较大,数据较分散;甲的极差小,数据较集中,这就说明甲比乙稳定运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论这时,我们考虑用更为精确的方法方差在上一课时中,学习了总体平均数的估计,其中提到平均数是“最理想”近似值的缘由同样我们可以考虑每一抗拉强度与平均抗拉强度的离差,离差越小,稳定性就越高那么,怎样来刻画一组数据的稳定程度呢?在上一课时中,设n个实验

3、值(=1,2,n)的近似值为,那么它与这n个实验值(=1,2,n)的离差分别为,由于上述离差有正有负,故不宜直接相加可以考虑将各个离差的绝对值相加,研究|+|+|取最小值时的值但由于含绝对值,运算不太方便,所以考虑离差的平方和,即()2+()2+()2,当此和最小时,对应的的值作为近似值,因为()2+()2+()2 =,所以当时离差的平方和最小,故可用作为表示这个物理量的理想近似值,称其为这n个数据,的平均数或均值,一般记为 在上述过程中,可以发现,一组数据与其平均数的离差的平方和最小,考虑用与其平均数的离差的平方和来刻画一组数据的稳定程度是可行的即本案例中,可用各次抗拉强度与平均抗拉强度的差

4、的平方和表示由于比较的两组数据的容量可能不同,因此应将上述平方和除以数据的个数,我们把由此所得的值称为这组数据的方差因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差开方后的值称为这组数据的标准差标准差也可以刻画数据的稳定程度一般地,设一组样本数据,其平均数为,则称为这个样本的方差,其算术平方根 为样本的标准差,分别简称样本方差,样本标准差根据上述方差计算公式可算得甲、乙两个样本的方差分别为50和165,故可认为甲种钢筋的质量好于乙种钢筋【精典范例】例1 甲、乙两种冬水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2), 试根据这组数据估计哪一种水稻品种的产量比较

5、稳定:品 种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8【解】甲品种的样本平均数为10,样本方差为0.02乙品种的样本平均数也为10,样本方差为0.24例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差天数151180181210211240241270271300301330331360361390灯泡数1111820251672【分析】用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命。【解】各组中值分别为165,19

6、5,225,255,285,315,345,375,由此算得平均数约为267.9将各组中值对于此平均数求方差得2128.60(天2)故标准差约为答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天。例3(1)求下列各组数据的方差与标准差(结果精确到0.1): 甲123456789乙111213141516171819丙102030405060708090丁35791113151719(2)比较计算结果,各组方差和标准差的关系是什么?【解】(1) 甲:6.7,2.6; 乙:6.7,2.6丙:666.7,25.8 丁:26.7,5.2(2) 乙的方差与标准差分别与甲的相同;丙的方差是甲的

7、方差的100倍,标准差是甲的10倍;丁的方差是甲的方差的4倍,标准差是甲的2倍例4某市共有50万户居民,城市调查队按千分之一的比例进行入户调查,抽样调查的结果如下家庭人均月收入(元)工作人员数管理人员数20560102005080204015合 计400100(1)一般工作人员家庭人均月收入的估计及其方差的估计;(2)管理人员家庭人均月收入的估计及其方差的估计(3)平均数的估计及总体方差的估计【解】分组数据用组中值作为本组数据的代表。(1) =995, =83475(2) =1040, =90900(3) =1004 =85284追踪训练1.若样本,的平均数,方差,则样本,的平均数_20_ ,

8、_0.4_2若,的方差为3,则,的方差为12。3.计算下列两组数据的平均数和标准差甲9.910.39.810.110.410.09.89.7乙10.210.09.510.310.59.69.810.1解:甲的平均数为:0.66 标准差:0.21乙的平均数为:10 标准差:0.92第9课时方差与标准差分层训练1以下可以描述总体稳定性的统计量是( )(A)样本均值 (B)样本中位数 (C)样本方差 (D)样本最大值x(n)2已知两个样本数据如下 甲9.910.29.810.19.81010.2乙10.19.61010.49.79.910.3则下列选项正确的是 ( )(A)(B)(C) (D)3设一

9、组数据的方差是,将这组数据的每个数据都乘10,所得到的一组新数据的方差是 ( ) (A)0.1 (B) (C)10 (D)1004已知,的方差为2,则23, 23,,23的标准差是_5某医院急诊中心关于其病人等待急诊的时间记录如下:等待时间(分钟)0,5)频数4853用上述分组资料计算得病人平均等待时间的估计值=_,病人等待时间标准差的估计值s=_6已知样本99,100,101,x ,y的平均数是100,方差是2,则_7(1)美国加利福尼亚州州长提出给所有的州政府雇员月薪增加70美元。这对于州政府雇员的平均月薪将会有何影响?对于月薪的标准差呢?(2)整个政府部门的月薪递增5%将对平均月薪有何影响?对于月薪的标准差呢?8甲、乙两机床同时加工直径为100mm的零件,为检验质量,从中抽取6件测量数据为甲9910098100100103乙9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定。拓展延伸9假定以下数据是甲、乙两个供货商的交货天数:甲109101011119111010乙88141

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论