土的剑桥模型发展综述_第1页
土的剑桥模型发展综述_第2页
土的剑桥模型发展综述_第3页
土的剑桥模型发展综述_第4页
土的剑桥模型发展综述_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、土的剑桥模型发展综述土体本构理论是岩土工程学科的重要基础理论。 随着对土体力学特 性的不断深入 ,塑性理论逐渐被应用于土体本构关系的研究中来。 Roscoe1于1963年提出著名的剑桥粘土模型,是应用塑性理论的代表, 被看做现代土力学的开端。在本构理论研究发展过程中 ,各种建模思想不断涌现 ,出现了各种不 同形式的土体本构模型 ,但弹塑性模型中得到公认的还只有剑桥模型。 现 在国际岩土本构的一大发展趋势是又回到剑桥模型,在剑桥模型基础上进行改进和修正 ,本文简要介绍了剑桥模型 ,并对剑桥模型的发展作了较 为系统的评述。1. 关于剑桥模型及修正剑桥模型1958 - 1963年间,英国剑桥大学的R

2、oscoe等1 根据正常固结粘土 和弱超固结粘土的三轴试验 , 提出的剑桥粘土的本构模型 ,标志着人们 在土体力学特性认识上的第一次飞跃。他们将 “帽子”屈服准则、正交流 动准则和加工硬化规律系统地应用于 Cam 模型之中 ,并提出了临界状态 线、状态边界面、弹性墙等一系列物理概念 ,构成了第一个比较完整的土 塑性模型。Roscoc和Burland2 又进一步修正了剑桥模型,认为剑桥模型 的屈服面轨迹应为椭圆 ,给出了现在众所周知的修正剑桥模型。 可以这样 说,剑桥模型开创了土力学的临界状态理论。试验证明 ,对于正常固结粘土和弱固结的饱和重塑粘土 ,孔隙比 e 与 外力p , q之间存在有唯一

3、的关系,且不随应力路径而发生变化。该模型 试图描述室内试验所观察到的现象,即从某一初始状态开始加载直到最 终维持塑性常体积变形的临界状态,其基本组成如下:(1)在(e , p)平面中,存在一条曲线,在正常固结粘性土中的所有应力遵 循此路径,这被称为正常固结线(NCL)。这条线提供了体积硬化规则,可 以被广义化为一般应力条件。 在(e , p , q)空间中存在一条线,所有的残余状态都遵循此路径,而与 实验类别和初始条件无关。这条线与(e , p)平面中的正常固结线平行, 在此线上,剪切变形发生而没有体积变形发生。(3)从固结排水和不排水实验中所得到的应力路径位于唯一的状态面,通 称为Rosco

4、e面。事实上,在不排水路径中,土随着塑性体积应变的发展而 硬化。其中,体积应变的弹性和塑性应变增量之和保持常数。Roscoe面价值在于给出了屈服面类型的一个选择依据。模型基于对临界状态线、相关联塑性理论中屈服面与固结定律的假 定。该模型假定:屈服只与应力球量p和应力偏量q两个应力分量有 关,与第三应力不变量无关;采用塑性体应变硬化规律,以ev为硬化参 数;假定塑性变形符合相关联的流动法则,即g (s) = f (s);假定变形 消耗的功,即塑性功为d 沪=Mpd .fU式中:为塑性偏应变增量。由(1)式得到的最初的剑桥模型屈服面形状为子弹头形,屈服函数为爲十lnp=ln皿(2)后来提出了修正的

5、假定式(3)来代替(1)式,即d = p3妒十碍丿z o在此假定的基础上,由 式得到的修正剑桥模型屈服函数为椭圆,可以 表示为P, = A»exp其中,硬化函数p c为剑桥模型是当前在土力学领域内应用最广的模型之一 ,其主要特点 有:基本概念明确;较好地适宜于正常固结粘土和弱超固结粘土 ;仅有3个 参数,都可以通过常规三轴试验求出,在岩土工程实际工作中便于推广;考 虑了岩土材料静水压力屈服特性、剪缩性和压硬性。2. 岩土临界状态下的变形特征所谓临界状态,即在常应力状态和常体积下岩土能够发生稳定的变 形或流动;其孔隙比与应力状态之间存在着唯一的关系。临界状态首先是由Casagrade提

6、出然后由Roscoe等发展并应用于粘土的本构模型中。 Been等将临界状态应用于砂土本构模型中3 ,后来,Nove no等4 建议 将临界状态概念应用于所有的岩土材料(岩石、砂土、粘土和混凝土)中。岩土材料力学特性的试验研究有大量的文献报道,对这些文献的研究分析表明:岩土的应力0应变曲线可大致归结为2种典型的形式5 ,如 图1所示,曲线代表起始状态疏松的砂或正常固结粘土,曲线代表起始状态紧密的砂或超固结粘土。在图1中,有2个坐标系,即qO e1坐标系 和ev O e1坐标系,q为剪应力,e1为轴向应变,ev为体积应变。q 松砂或正常固结粘土 密实砂或超固结粘土m i 2种典型的应力应变曲线对初

7、始状态疏松的砂土或正常固结粘土 ,如应力o应变曲线所 示。在剪切过程中,随着轴向变形逐渐增加,剪应力逐渐增加,体积逐渐减 小即处于压缩状态,到达B点,随着轴向变形的继续增加,剪应力和体积 应变逐渐稳定并接近一条水平线,即体积应变率为0 ,应力率也为0。对初始状态紧密的砂土或超固结粘土 ,如应力O应变曲线所示。在 剪切过程开始段,剪应力较小、应变不大,整个试件体积略微压缩,表明这 个阶段颗粒主要被挤向更紧密的排列,与侧限压缩试验的情况差不多; 剪应力再增大之后,试件便进入屈服阶段,应变逐渐加快增大,试件体积开 始膨胀(或剪胀),即体积变形先是呈压缩状态后呈膨胀状态;剪应力到达 某一峰值A点后,由

8、于颗粒与颗粒间的咬合作用逐渐丧失,剪应力无法继 续上升,反而开始下降,剪应力和体积变化逐渐稳定并接近于一条水平线, 即B点,此时轴向应变el和体积应变ev很大,试件进入破坏阶段。试验曲线中的A点,常被称为峰值点,对应的抗剪能力称为峰值强 度,曲线中的B点,常被称为临界状态点,对应的抗剪能力称为残余强度。 从图1可以看出:临界状态是岩土的体积保持不变或塑性体积应变率为0的状态,通常对应的应变为10 %或更大,对于应变硬化材料,它与破坏强 度相对应;对于应变软化材料,它与残余强度相对应。3. 剑桥模型发展3. 1 基于经典塑性理论框架的修正帽盖模型是 Dimaggi 和 Sandier ( 197

9、6)6 在剑桥模型的基础上提出 的。该模型不仅能描述塑性屈服前的非线性、 剪胀性等特性 ,还能描述屈 服后的各种破坏性状与塑性硬化性状。国内 , 魏汝龙(1981)7 根据不排 水三轴压缩试验资料得到的正常固结粘土模型,比修正剑桥模型具有更大的适应性 ,修正剑桥模型仅是它的特例。 杨林德、张向霞(2005)8 针对 CamOclay 模型计算中存在没有充分考虑剪切变形的缺点,首先采用理论分析的手段 ,指出产生此现象的原因 , 同时提出由剪应力和体应力引 起的应变分量分别采用不同的分配比例系数的思想。在此基础上对 CamOclay 模型进行了改进。3. 2 非关联流动Banerjee和Stiph

10、o ( 1978 )9 基于剑桥模型框架,采用塑性增量理 论,分析各向同性正常固结及微超固结粘土的不排水应力0应变反映,建立了关联和非关联流动的弹塑性本构模型。 Newson (1998)10 提出一个 软粘土非关联流动的临界状态本构模型 ,其屈服面与修正剑桥模型相同 , 塑性势函数为一经验函数 ,屈服面与塑性势面在偏平面上从低应力时的 圆形到破坏时的松岗元屈服面。3. 3 次塑性理论与临界状态土力学Masin (2005)11 将次塑性理论与临界状态土力学相结合 ,建立了一个既适用于正常固结也适用于超固结粘土的本构模型Masin(2005)12 还利用次塑性模型预测修正剑桥模型的状态边界面的

11、存在。3. 4 有限应变的剑桥模型Yatomi 等(1989)13 提出了考虑有限应变的剑桥模型 ,模型中加入 了非共轴因素 ,可模拟土的局部剪切带。 Callari 和 Auricchio ( 1998 )14 , Borja 和 Ronaldo 等(1996 ,1998)15 ,16 也分别建立了有限应变剑桥本构 模型,Ortiz和Pandolfi (2004)17 基于剑桥模型框架,建立非粘性土本构 模型,具有指数型压缩曲线 ,屈服面及塑性势为椭圆 ,采用体积应变硬化 , 模型预测从小应变扩展到有限应变。3. 5 时间相关的剑桥模型Hsieh等(1990)18 ,19 利用剑桥塑性理论将

12、粘性土的应力 0应变 关系加入与时间相关的因素 ,把总变形分为瞬时应变和粘性应变部分。 瞬 时应变利用 2个屈服面来计算 ,一个屈服面为修正剑桥模型的椭圆形 ,另 一个用 Von Mises 的圆柱形屈服面来描述 ,Arai 等(1988)20 ,Namikawa (2001)21 分别结合剑桥模型建立了依赖时间的正常固结粘土的塑性模 型,Arai的模型还考虑了粘土各向异性K 0固结对应力O应变关系的影 响。Liao等(2000)22 基于修正剑桥模型与Perzyna粘塑性方程,运用相 关联与不相关联的塑性流动法则 ,建立了一个反映时间效应和剪胀行为 的本构模型。Yin和Graham (199

13、9)23基于修正的剑桥模型建立了一个 弹粘塑本构模型 ,这个模型能模拟加速蠕变、 卸荷再加载、 松驰等软粘土 变形行为。3. 6 考虑各向异性及结构性日本学者太田和关口 (1979)24 提出了反映各向异性和应力轴旋转 的关口 0太田模型,并被广泛应用于日本的工程实践中。其精华在于引进 新的应力比,使剑桥模型成为其特例,能考虑K0固结引起的应力各向异 性,和主应力轴旋转产生的塑性变形。但不能考虑中主应力的影响,即不能考虑真正三维的应力状态。剑桥模型沿球应力轴 ( p 轴) 为等向塑性体变硬化 ,在日本广泛采用 的关口 0太田模型24 沿初始固结线 ( K 0 线) 为不等向塑性体变硬化。 三轴

14、试验数据表明:自K 0状态向伸长方向剪切时,前者方法计算的体积 应变偏小 ,而后者方法计算的体积应变偏大。孙德安、姚仰平、殷宗泽 (2000)25 提出一种介于上述两者之间、考虑初始应力各向异性(如K 0固结) 的不等向塑性体变硬化弹塑性模型。模型的剪切屈服准则使用 SMP 准则,该模型能在三维应力下较好地反映土的强度和变形特性,模型的土性参数与剑桥模型一样。Voyiadjis等(2000)26 基于Dafalias的各向异性修正剑桥模型建立 了一个新的考虑体土的各向异性和结构性的本构方程 ,利用了一个称为 塑性旋转张量的内变量 ,这个塑性旋转张量是引起各向异性的背应力的 函数, 模型增加了

15、2 个背应力参数。 Wheeler 等(2003)27 利用多阶段三 轴排水试验的数据 ,改进修正剑桥模型 ,建立了饱和软粘土各向异性本构 模型。Liu和Carter (2002)28将土的结构性加入修正剑桥模型,3个新的 参数用来描述土的结构性 ,如果所模拟的土无结构性 ,该模型等同于修正 剑桥模型。Joh n和Carter等(1995)29 提出一个土的结构性剑桥模型, 这个模型基于临界状态框架 ,能考虑天然粘土的当前应力状态、应力历 史、当前孔隙比和当前土的结构 ,采用塑性体应变硬化。针对修正剑桥模型仅适用于正常固结及弱固结粘土,而不适用于严重超固结土的情况,Amerasin和 Kraf

16、t (1983)30 ,Banerjee 等(1986)31 建立了严重超固结土的剑桥模型。Mita和Dasari等(2004)32 基于严重超固结土的三轴压缩0伸长试验及平面应变试验,建立了一个伏斯列夫0 修正剑桥 ( HvorsleOMCC) 模型, 模型具有伏斯列夫面 , 采用 Mohr0Coulomb 屈服准则 ,并被扩展到一般三维应力空间。刘元雪,施建勇(2003)33 从岩土类材料极限应力状态线所致的各向 异性出发 ,提出了应力空间变换思想。 以修正剑桥模型屈服面的中心为映 射中心 ,给出了重塑土的应力空间变换、应力增量变换的公式, 并考虑了应力洛德角的影响。 在变换应力空间中对修

17、正剑桥模型进行了重新表述 与改进 ,该模型可以较好地反映各向异性的影响 ,反映三轴伸长等应力路 径的应力应变特性 ,也反映某些路径所致的软化现象。3. 7 循环荷载下的临界状态模型Carter 和 Booker 等(1979 )34 , Hirai 和 Hi2royoshi (1987)35 分别 建立了循环荷载下的临界状态模型 ,后者采用非关联流动法则 ,屈服面及 塑性势均为剑桥模型形式。Nova和Roberto ( 1983)36 基于剑桥模型, 建立了模拟循环荷载下粘土或砂土变形特性的弹塑性本构模型,可模拟土的迟滞、模量衰化及液化等行为。Rouainia和Wood (2000)37 提出

18、了 一个天然粘土的率相关本构模型 ,该模型是剑桥模型的扩展 ,建立在边界 面塑性的运动硬化框架内 ,可考虑塑性应变引起的结构损伤。Borja 和Ron aldo等(2001)38 将经典修正剑桥模型与具有椭圆加载函数的各向 异性边界面塑性模型结合 ,该模型还耦合非线性超弹性模型。3. 8 扩展到一般三维应力空间Nakai等(1986)39 基于SMP屈服准则,建立了一个在三维应力空 间模拟粘土各种不同应力路径下行为的本构模型 ,模型不仅考虑了中主 应力的影响 ,也反映了应力路径对土体应力与应变关系的影响。 模型参数 确定方法与剑桥模型相同。Matsuoka等(1999 ,2005)40 ,41

19、采用SMP (空 间滑动面 ) 准则对剑桥模型进行了扩展 ,将剑桥模型从三轴试验的轴对 称应力状态扩展至一般应力状态 ,其修正的方法是引入变换应力 ,重新定 义变换后的广义正应力和剪应力 ,然后代入剑桥粘土模型中 ,实现从 Mises破坏准则向SMP破坏准则的扩展。姚仰平等(2000)42 将Lade屈 服准则引入最初的剑桥模型 ,以实现模型的三维化 ,采用变换应力将 Lade 屈服准则变为扩展的 Mises 屈服函数类型。孙德安 ,姚仰平(2002)43 又 提出了一个适用于粒状材料的简单而实用的弹塑性模型。 该模型通过对 修正剑桥模型进行改进 ,能够反映三维应力状态下的剪胀剪缩性和变形、

20、强度的平均应力依存性。姚仰平等(2006)44 还把Mohr O Coulomb准则 与剑桥模型相结合,提出了一个变换应力张量,在主应力空间上,将Mohr O Coulomb 准则变为圆锥形 ,能描述一般应力空间土的变形特性。3. 9 扩展到砂土、非饱和土Borja和Ron aldo45 ,将经典修正剑桥模型从饱和粘土扩展到非饱 和土。 Robinet 等46 建立了适用于膨胀土 ,具有两个屈服面的修正剑桥 模型形式的本构方程。 砂土的变形行为不仅依赖于其相对密度也依赖于 所处的固结压力。同一固结压力下 ,密砂剪胀,松砂剪缩;同一密度的砂 , 在低固结压力下可能剪胀 ,而在高固结压力下则可能剪

21、缩。 在临界状态理 论的框架内 ,为了统一反映密度和压力对砂土变形特性的耦合影响 , Been 和Jefferies47 建议了一个状态参数 把围压和密度的耦合作用加入到本构方程中 ,其中 , Yu48 提出一个对粘土和砂土都适用的统一临界状态模 型,采用应力比与状态参数的关系来描述土的状态边界面,重新定义了屈服函数及塑性势函数 ,模型适用范围广 ,相对简单 ,与剑桥模型相比 ,仅增 加2个参数。Gajo和Wood49 基于剑桥临界状态概念,小应变弹性区假 定,状态参数概念 ,剑桥模型的流动法则 ,边界面概念和运动硬化塑性 ,建 立了一个反映较大范围孔隙比和应力水平的粒状材料本构模型。4. 剑桥模型的局限性纵观剑桥模型 40 多年的发展 ,总结其局限性主要有 :(1) 受制于经典塑性理论,采用Drucker公设和相关联的流动法则,在很多 情况下与岩土工程实际状态不符 ;破坏面有尖角 ,该点的塑性应变方向不 易确定。(2) 因为屈服面只是塑性体积应变的等值面 ,只采用塑性体积应变作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论