灰色预测模型理论及其应用_第1页
灰色预测模型理论及其应用_第2页
灰色预测模型理论及其应用_第3页
灰色预测模型理论及其应用_第4页
灰色预测模型理论及其应用_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息乂含有未知或非确定信息的系统进行 预测,就是对在一定方位内变化的、与吋间有关的灰色过程的预测.尽管过程屮 所显示的现象是随机的、杂乱无章的,但毕竟是有序的、冇界的,因此这i数据 集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行 预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元冋归分析等 需要较多数据的统计模型不一样.因此,对于只有少量观测数据的项口来说,灰 色预测是一种冇用的工具本文主要围绕灰色预测gm(1,1)模型及其应用进行展 开。一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论

2、的研究中。若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称z为白色系 统。若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系來观测研究,这 种系统便是黑色系统。灰色系统介于二者z间,灰色系统的一部分信息是已知的,一部分是未知的。区別白色和灰色系统的重要标志是系统各因素间是否有确定的关系。特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定 型系统的研究对象。1.2灰色预测灰色系统分析方法是通过鉴别系统因索z间发展趋势的相似或相异程度,即进行关联度 分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性, 可以用

3、它來建立和应的微分方程模型,从而预测事物未來的发展趋势和未來状态。灰色预测 是用灰色模型gm(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、 销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未來某一时刻的特征量,或 者达到某特征量的时间。(2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出 现在特定时区内。(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。(4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测 系统整体变化的同时,预

4、测系统各个环节的变化。上述灰预测方法的共同特点是:(1) 允许少数据预测;(2) 允许对灰因果律事件进行预测,比如灰因白果律事件:在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因, 然而粮食产量却是具体的,故为白果。粮食预测即为灰因白果律事件预测。白因灰果律事件:在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的 效益暂时不很清楚,为灰果。项冃前景预测即为灰因白果律事件预测。(3) 具有可检验性,包括:建模可行性的级比检验(事前检验),建模精度检验(模型 检验),预测的滚动检验(预测检验)。二、gm (lzl)模型2. 1gm(1, 1)模型gm(1,1)模型是基于

5、灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方 程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用 生成数序列代替原始吋间序列,弱化原始吋间序列的随机性,这样可以对变化过程作较长时 间的描述,进而建立微分方程形式的模型.其建模的实质是建立微分方程的系数,将时间序 列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型.经证明,经一阶线性 微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测gm(1,1)模型的预测 将是非常成功的.2. 2gm(1, 1)模型的建立gm(1,1)模型是指一阶,一个变虽的微分方案预测模型,是一阶单序列的线性

6、动态模型, 用于吋间序列预测的离散形式的微分方程模型.模型符号含义为gm(1,1)t t t tgreymode 11阶方程1个变量设时间序列x(°)有个观察值,x(0>=x(0)(1),x(0)(2),-,x(0)(h),为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令从而得到新的生成数列x,x彳兀,丿)(2),称兀伙)+祇伙)=b为gm(1,1)模型的原始形式。新的生成数列x-般近似地服从指数规律.则生成的离散形式的微分方程具体的形式为dxax = udt即表示变量对于时间的一阶微分方程是连续的.求解上述微分方程,解为a当21时,x(c = x(l),即c =

7、 x(l)-,则可根据上述公式得到离散形式微分方程的具体 a形式为兀/、41)-ia)z/r其屮,祇项中的尢为一的背景值,也称初始值;a,比是待识别的灰色参数,q为发展系 dt数,反映兀的发展趋势;u为灰色作用量,反映数据间的变化关系.按片化导数定义冇dx x(r+q)-x(r)=lim dt de dr显然,当时间密化值定义为1时,当口/tl时,则上式可记为dx=lim(x(r + /) %(/)dt mez/y这表明加是-次累减生成的,因此该式可以改写为= x(1)(r + l)-x(1)(r) dt当w足够小吋,变量x从无到是不会出现突变的,所以取的平均值作为当山足够小时的背景值,即兀i

8、 rn兀(r)+兀(r+1)(紧邻均值(mean)21-生成序列)将其值带入式了,整理得(/) +兀(f + l) + u (gm(1,1)模型的均值形式)1 lx(o)(r + l) =a x12 l 山其离散形式可得到如下短阵:少x(o)(3)-|x(1)(l) + %(1)(2) 扣+兀1叫)丿兀叫2),兀(。),x(0)(n)t扣+兀一扣+兀_丄< 2 -a-a w)t称丫为数据向量,b为数据矩阵,g为参数向量.则上式可简化为线性模型:y = ba由最小二乘估计方法得a-=(btby bty上式即为gm(1,1)参数的矩阵辨识算式,式中(brb)_l b丫事实上是数据矩阵b的广

9、义逆矩阵.将求得的ti, u值代入微分方程的解式,则无二兀一兰-“(7iq丿英中,上式是gm(1,1)模型的时间响应函数形式,将它离散化得x(,)(z)= fx(0)(l)-l-fl(z-1)i q丿对序列丘再作累减牛成可进行预测.即i(0)(r)= i(,)(r)-1)(r-i)=)(1)_兰(1_/)严ti q丿上式便是gm(1,1)模型的预测的具体计算式.2.3 gm(1, 1)模型的检验gm(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残養检验屈丁算术检验,对模型值和实际值的误差进行逐点检 验;关联度检验属于几何检验范i刑,通过考察模型曲线与建

10、模序列曲线的几何相似程度进行 检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验, 衡量灰色模型的精度.> 残差检验残差大小检验,即对模烈值和实际值的残差进行逐点检验.设模拟值的残差序列为e(0)(r),则严=x(o)(r)-x(o)(r)令£(r)为残差相对值,即残差百分比为令入为平均残差,=“ /=1一般要求£(“<20%,最好是£("<10%,符合要求.>关联度检验关联度是用來定量描述各变化过程之间的差别.关联系数越大,说明预测值和实际值越 接近.设x<()= x(0) (1),丘(2),x

11、(,) (/?)x(o)(r) = x(o)(l),x(o),少)序列关联系数定义为min|x()(0-x(0)(0 + p max |x(0) (r) -x(0) (/)|jx(o)(r)-x(o)(r)1+ pmaxx(o)(r)-x(o)(r),心0t = 0式小,呼-严(科为第f个点严和*)的绝对误差,的为笫r个数据的关联系数,p称为分辨率,即取定的最大差百分比,ovpvl, 般取p = 0.5.严)和x(o)(r)的关联度为1 畀n r=l关联度人于60%便满意了,原始数据与预测数据关联度越人,模型越好.> 后验差检验后验差检验,即对残差分布的统计特性进行检验.检验步骤如下:1

12、、计算原始时间数列x二,°)(1),"°)(2),兀(°)(对的均值和方差尹)2、计算残差数列严二严,严(2),刃)()的均值巨和方差£1 "1 noe=-亍严,s;二丄立严(/)-对n /=!n /=!其中0)(r)= x(0)a)-x(0)(r) , z = l,2,.,n为残差数列.3、计算后验差比值c = sjs4、计算小误差频率p = p|e(o)(z) - e| < 0.6745s,令so二0.6745s" (/)=|£(°)(" 臣|,即 p=pa(z)<5().若对给

13、定的c()>0,当c<c()时,称模型为方差比合格模型;若对给定的代>0,当p>p.吋,称模型为小残差概率合格模型.pc模型精度>0. 95<0. 35优>0. 80<0.5合格>0. 70<0. 65勉强合格<0. 70>0. 65不合格表3后验差检验判别参照表2.3 gm(1, 1)模型修正(残差gm(1, 1)模型)当原始数据序列x(°)建立的gm(1, 1)模型检验不合格时,可以用gm(1, 1)残差模型来修 正如果原始序列建立的gm(1,1)模型不够精确,也可以用gm(1, 1)残差模型来提高精度.若用

14、原始序列x(°)建立的gm(1, 1)模型x(1) (r +1) = x<0) (1) -eat + -a a可获得生成序列x的预测值,定义残差序列严伙)二兀伙)-丘伙).若取k=t,ml,,/7,则对应的残差序列为严二严,严,严)计算其生成序列幺伙),并据此建立相应的gm(1, 1)模型e(1)(/ + l) = e(0) (1)-性上一以 + 丝4ae得修正模型兀(/ + 1)=?0)(1)-£说 + 匕 +5伙 _/)(_)严-经.a.aa-其中/伙t) = y kf为修止参数.0 k<t三、gm (14)模型的应用表1南昌市民用汽车保有量年份200420

15、0520062007200820092010201120122013南昌市民用汽车保冇量(万辆)24.410926.730730.387836.380741.016143. 734& 41615763. 1第一步:构造累加生成序列x;x=(兀,兀,兀(3),兀,兀(5),兀(6),无(7),兀(8),兀(9),兀(10)=(24.4109,51.1416,81.5294,117.9101,158.9262,202.6562,251.0662,312.0662,369.0662, 432. 166) 第二步:计算系数值;对x做紧邻均值生成.令z仇) = 0.5兀伙) + 0.5兀伙-1)

16、,得z=(z,z,z(4), z(5),z(6),z(7), z,z(9), z(,10)=(37.77625,66.3355,99.71975,138.41815,180.7912,226.8612,281.5662,340.5662,400.6161)则数据矩阵b及数据向量y为"1-z1-z1-z1-尹1-z1-z(8)1.-z (9)137.77625-66335599.71975-180.7912b=-226.8612-281.5662340.5662-400.6161r_26.7307_1?0)(3)30.3878136.3807x(0) (4)141.0161?0)(5)

17、1,y =43.731兀48.411?0)(7)611x(o)(8)571_x(o)(9)_63.1-138.41815对参数列a = a.ur进行最小二乘估计,得a = (btbylbty = bty-00162425.290111a =0.101624, w = 25.290111a 二-0. 101624 , u =25. 290111 , 平均相对误差为 4. 685749% 第三步:得出时间响应预测函数模型为:x伙 +1) = 273.269896円24° _ 248.858996第四步:进行灰色关联度检验。真实假24. 4109, 26. 7307, 30. 387&am

18、p; 36. 3807, 41. 0161, 43. 7300, 4& 4100, 61. 0000, 57. 0000, 63. 1000预测值:24. 4109, 29. 2310, 32. 3578, 35. 8190, 39. 6504, 43. 8917, 48. 5867, 53. 7839, 59. 5371, 65. 9056计算得到关联系数为:1, 0.906683, 0. 444273, 0.416579, 0.82377, 0.357133, 0.715694, 0.843178, 0.333333,0. 770986)于是灰色关联度:一0.661163关联度一0

19、. 661163满足分辨率p二0. 5时的检验准则r>0. 60,关联性检验通过。第五步:后验差检验。计算真实值的均值与标准差:乂=43.2166, &二14.0254计算残差的均值和标准差:a = 1.9295, 52=4.6134于是方差比c=s2/sfo. 3289<0, 35so=o. 6745*si=9. 4601j = |a()-a| = 1.9295,0.5708,0.0405,1.3678,0.5638,1.7677,1.7527,5.2866,0.6076,0.8761所有乞都小于s。,故小误差概率p=pei<s()=lf 乂 c<0. 35

20、所以后验差检验通过。第六步:残斧检验。(1)得到模拟值、残差和相对误差如下:序号模拟值残差相对误差(%)124.410900229. 2309862.5002869. 353612332.3577511.9699516.482704435.818976561724-1.544016539.650442-1.365658-3.329566643.891749.161749.369881748.586737 176737.365084853.783938-7.216062-11.82961959. 5370682.5370684.4509961065.9055972.8055974.446271相

21、对课差序列屮有的相对误差很人,所以要对原模型x 伙 + 1) = 273269896严°"24248.858996 进行残并修正,以提高精度。(2)利用残差对原模型进行修正:我们取幺"=2.500286, 1.969951, 0. 561724, 1. 365658, 0. 161749 ,0. 176737, 7.216062,2.537068, 2. 805597同样的可求得a = -0. 183488 , u 二0. 481549则有刃(£ + 1)=幺一如 e0j83488-2.62442_ j.=5.124706严跆叙2.62442对上述求导,得:0(1)(£ +1" = 0.9403 e°问488 k这样就得到经过残差修正后的灰色预测gm(1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论