计算流体力学基础_第1页
计算流体力学基础_第2页
计算流体力学基础_第3页
计算流体力学基础_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的 学科。事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分 布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控 制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的 分布以及随时间的变化,这听起来似乎十分简单。但遗憾的是,常见的流动控制 方程如纳维一斯托

2、克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性 的偏微分方程组,以解析方法求解在大多数情况下是不可能的。实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。 因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多 数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。守恒 方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。通过质量衡算可以得到连续性方程,通过动量守恒可

3、以得到动量方程, 通过能量衡算可以得到 能量方程。式 一是未经任何简化的流动守恒微分方程,即纳维一斯托克斯 方程(N-S方程)。dte(阿)"(血厂一叟+乩dy dxdz(2a)<2h)+ V、(/MVp )=dT(2e)十严)+厂N-S方程可以表示成许多不同形式,上面的 N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。事实上也可以直接求解u、v、 w、T等原始变量,这种形式的方程被称为非守恒形式, 因为这些变量并不守恒。 也可以根据具体的流动状况进行简化。如对于无粘流动N-

4、S方程可以简化为欧拉方程(粘性项被去掉),如式(4) 一 (6)所示;于不可压缩流动(液体的流动,马 赫数小于0.3的气体流动),N-S方程可以简化为不i缩的N-S方程(密度恒定, 因此被消去);对于定常流动,N-S方程可以去掉时间导数】简化为稳态的 N-S 方程;流体流动往往具有三维性质,但是也常常可以简化为二维流动、一维流动。 对于CFD的计算来说三维简化为二维或一维意味着运算量的大幅度降低。(4)<5a)(5b) + V(pP) = ()dl尸Ctoxofdy響NS內一鲁+ /dtdzdldx dy dz三、求解控制方程的数值方法对于无法用解析方法求解的微分方程可以用数值方法求解,

5、所谓数值方法求 解就是用近似的数值解逼近微分方程的精确解。流动控制方程的精确解是流场计 算域内流动参数(如速度、压力、温度等)的连续分布,而数值解则是流场计算 域内离散的点上的近似解对连续精确解的逼近, 换句话说,我们可以把连续的流 场离散为一定数目的不连续的点, 在这些离散点上,守恒方程被近似满足,如果 离散点之间的距离为无穷小,则近似解将无限趋近于精确解,因此我们可以周近 似解代替精确解。这就是流动微分方程数值求解的基本思想。以数值方法求解流动微分方程,首先要把需要求解的流场的几何空间(或称 为计算域)离散为孤立的不连续的点,或者说用一定数量的点覆盖或代表要求解 的连续的流场,然后将流动控

6、制方程的偏导数用离散点之间的有限变化来代替, 例如,表示速度梯度的导数 Du/ 8x用差商 u/Ax来代替,其中甜和 Ax分 别是x坐标方向的两个相邻的点的速度差和坐标 x的增量。可以想象,如果控制 微分方程中的所有导数或偏导数都被类似于差商的量代替的话,偏微分方程将有可能变成一个线性方程,一个只包含离散点的坐标和待求函数值(如上述的u)的线性方程。事实上,我们可以把流动控制方程组的每一个偏微分方程在每一个离 散点上转变为一个线性方程。假如我们用100个点离散一个计算域,那么对每个 偏微分方程我们将得到100个线性方程。至此,偏微分方程的求解已经转化为线 性方程组的求解,如果得到线性方程组的解

7、,我们就得到了偏微分方程组的近似 数值解。因此,我们也可以说,CFD模拟的过程本质上是在计算域上构建线性 方程组并求解线性方程组的过程。从上面的论述可以看出,数值方法求解流动微分方程至少包括三个步骤:首 光,离散计算域;其次,在离散后的计算域上离散控制方程;其三,求解离散得 到的线性方程组。需要补充的是,并不是所有的线性方程都需要求解,实际上有 些特殊点上的流动变量值或其梯度是己知的, 这些特殊的点就是计算域边界上的 点。通常为了限定微分方程的解,我们需要给出定解条件,在这里就是所谓边界 条件。同样的道理,对于包含时间导数的微分方程,我们需要给定初始条件。上面我们用差商取代导数的方法介绍了离散

8、 (把连续空间里的微分方程转化 为该连续空间内的不连续的点上的近似的线性方程的过程叫做离散化)微分方程的思想。但是应该注意的是,流动控制微分方程的离散化需要严谨的数学推导、 证明和分析。离散化方法的研究是CFD最重要的部分,也是CFD中的数值方法 的基础。计算流体力学中有三大类主要离散化方法,即:有限差分方法(FDM),有限体积方法(FVM)和有限元方法(FEM)。三者的区别主要在于它们处理最基本 的离散单元的方法,其中有限差分和有限体积法更为常用。有限差分法通常在离 散点上直接以差分替代微分(即差商替代导数),差分可以分为向前、向后和中 心差分;有限体积法则首先对构造在离散点周围的控制体进行

9、积分,将一阶导数项转换为代数项,然后在控制体界面插值来实现离散化。对于不同的控制方程, 每一类方法又有许多具体的实施办法,这些实施方法被称为格式(scheme。(1)计算网格的生成在计算流体力学术语中,计算域的离散被称之计算网格生成, 所谓网格实际 上就是用上述的离散点以某种方式连按而成的“网络”。最直观的网格是二维网 格,例如,我们可以将一个矩形计算域用一定间隔的 x方向的若干条直线和类似 的y方向的若干条直线划分为一个个小的矩形单元组成的网状结构,这个网状结构就是一个最简单的二维网格。前述的用于离散控制方程的点可以是网格线的交 叉点,也可以是矩形单元的中心,这取决于离散控制方程所采用的方法

10、。实际上,划分网格有很多方法,网格线可以是直线或曲线、正交的或非正交 的,网格线的间隔可以是均匀的或非均匀的。 而有些网格并不存在有意义的网格 线,或者说网格线没有规则的结构,如用小的三角形单元构成的二维网格(类似 于有限元网格),这样的网格被称为非结构网格(unstructured grid),相对应的是 前面所说的具有直线或曲线网格线的网格被称为结构网格(structured grid)。二维网格是最据直观意义的网格,而一维网格的划分实际上是将一个有限长度的直线 或曲线分割成长度一定数量的均匀或不均匀的小的线段,控制方程将在这些小线段的端点或中心离散。三维网格则可以看作二维网格在第三维方向

11、的延伸,例如三维结构网格的网格单元常见的是长方体或扭曲的长方体(视直线网格或曲线网格而定),三维非结构网格旳网格单元多为四面体。网格生成是CFD模拟的一个十分重要的部分,为了确保计算精度,网格必 须足够密集,事实上我们并不要求网格的密度在整个网格范围均匀一致,通常对流动参数梯度大的地方要采用较为密集的网格(例如激波的位置,边界层附近),梯度小的地方则可以适当采用疏松的网格 (比较开阔的空间、流动被扰动较少的 地方)。一个高质量的网格是CFD模拟成功的关键因素,不合适的网格可能直接 导致计算的失败。因此,人们在生成网格上花费的时间常常超过全部CFD工作时间的50%,对于复杂的几何形状网格生成所花

12、费的时间甚至达到70%。由于网格生成的复杂性和巨大的工作量,许多专业的网格生成工具应运而生,例如 ICEMCFD,Gambit 等。(2)边界条件与初始条件对于CFD模拟要求解的问题,计算域的几何边界定义了流场的范围,或者说计算域是由几何边界确定的,而边界的物理特性则定义了问题本身。如前所述, 边界点的流动参数值常常是给定的, 因此是已知的,这就是边界条件。从给定方 式来看,边界条件有三种形式:其一,Dirichlet边界条件,直接给定流动参数的 值,如给定边界的速度、温度;其二,Neumann边界条件,给定一阶导数,如给定压力梯度;其三,混合边界条件,是 Dirichlet边界条件和Neum

13、ann边界条 件的混合。以上三种边界条件也被称为第一、第二、第三类边界条件。从边界的 物理性质来看,边界条件又可分为:固壁边界条件、入口边界条件、出口边界条 件等等。给定正确或合适的边界条件对于 CFD计算也是十分重要的,实际上流 场的特性很大程度上是由边界条件决定的。相对而言,初始条件的设定比较简单,我们需要给定的是一个初始时刻己知 的流场。事实上并不是所有的 CFD计算都需要初始条件,初始条件仅对于随时 间变化的流场的求解才是必不可少的。(3)计算结果的后处理一个成功的CFD计算环节完成之后,CFD程序或软件将计算结果写入一个 或多个特定格式(因特定的软件而异)的数据文件,这些数据文件通常

14、包括计算 网格点的坐标,每个网格点上的流动参数值(如速度,压力,沮度,密度等),对于这些数据的分析还需要专门的工具软件,这些工具软件将网格的结构、流动参数的分布等显示出来。常见的基本的显示方法包括标量等值线分布(如温度、 压力分布的云图),向量分布(例如用带箭头的线段表示速度的大小和方向),X-Y曲线图等。这些后处理方法将计算结果清晰地显示出来,供人们方便地分析和评价计算结果。四、著名CFD通用软件简介目前在我国设有代理或办事处的著名 CFD通用软件有PHOENIGSFLUENT STAR-CD CFX-TASCflow与NUMEC等,PHOENIC软件是最早推出的 CFD通用软 件,FLUE

15、NT STAR-C与CFX-TASCflow是目前国际市场上主流软件,而 NUMECA 则代表了 CFD通用软件中的后起之秀。PHOENIC软件以低速热流输运现象为主 要模拟对象,由于长期积累以及Spalding在建立理论模型上非凡的创造力,PHOENICS包含的湍流模型、多相流模型、燃烧与化学反应模型等相当丰富,其 中有不少原创性的成分,如将湍流与层流成分假设为两种流体的双流体湍流模型 MFME33、专为组件杂阵的狭小空间f如计算机箱体1内的流动和传热计算而设 计的代数湍流模型LVEL等都是Spalding与其合作者提出的。PHOENICS勺边界 条件设置也很有特点,是以源项的方式给定的。这

16、个软件附带了从简到繁的大量 算例,一般的工程应用问题几乎都可以从中找到相近的范例,再作一些修改就可计算用户的课题,所以能给用户带来极大方便。PHOENICS勺暖通空调计算模块FLAIR被广泛应月,也被一些别的应用软件包采纳,如英国集成环境公司(IES)的虚拟环境软件,就用它来模拟局部空间的热流现象。由于PHOENIC以压力校正法为基本解法,从而不大适合高速可压流计算。PHOENIC列以用非正交贴体网格,但网格畸变较大时可能会发生因难,估计是在算法中采用交错网格离散的 缘故。笔者用PHOENIC计算风机流动,当叶片安装角(倾斜度)超过一定范围 收敛就有困难。所以PHOENIC提倡采用直角形网格f

17、笛卡儿网格1,并提供了 网格局部加密功能与网格被边界切割的补偿功能 (PASOL) E341与之相配合。近 年来,直角形网格以其极其简便的优势,重新为人们关注E35, 361,PHOENICS在这方面的努力很有意义。PHOENIC软件的价格比其他CFD通用软件低得多,其高性价比使之成为国内用户最多的软件。FLUENT、STAR-CD与CFX-TASCflow堪称目前CFD主流商业软件,FLUENT包 括其多种专用版本1的市场占有率达40%左右,显然是应用面最广、影响最大的 CFD软件;STAR-C匪日本销量占首位,在汽车工业中广泛用于内燃机计算;而 CFX-TASCflow则在叶轮机、核能工裎

18、等领域广泛使用。这几种软件有不少共同 的特点,例如它们都采用了压力校正法作为低速不可压流动计算方法,而可压缩流动则采用耦合法。它们在前、后处理上都下了极大功夫,FLUENT还根据用户的不同需求推出多种专用版本,如用于电子设备冷却的ICEPAK用于空调分的AIRPAK用于化工搅拌的MIXSIM等,为用户带来很大便利,这是它们取得商业 化成功的重要因素。STAR-CD1按非结构网格设计的软件,FLUENTf CFX在其新 版本FLUENT与CFX5中采用了非结构网格。非结构网格由于其表面方向的多变 性,使一些在结构型网格中成功应用的高精度离散格式,如基于矢通量分裂或通量差分分裂的二阶上风格式及其限制器,不能直接推广应用于非结构网格;QUICK 格式用于非结构网格时精度也降低。FLUENT采用的二阶上风格式是 Barth与Jespersen 针对非结构网格提 出的多维梯度重构法(multi-dimensional gradie nt rec on structio n) E371。这个方法也是第一个较成功地用于非结构网格的二阶上风格式,它后来进一步发展,采用最小二乘法估算梯度E38,能较好地处理畸变网格的计算。FLUENT等率先采用非结构网格使它们在技术上处于 领先,然而总的说来,非结构网格技术还不十分成熟,对于复

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论