版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 用Matlab和Lingo求解生产问题 用Matlab和Lingo求解生产问题摘要本文针对生产过程中在产品中原料分配的不同,导致产品的经济效益的不同,从而寻求使得产品经济效益最大的生产方案。在对问题进行深入分析后,采用线性规划模型建立数学模型并运用Matlab和Lingo软件分别对该问题进行编程求解。关键词:经济效益 线性规划模型 Matlab Lingo With Maltab and Lingo Software to Solve the Production Problems ABSTRACTThe production process,the author of this paper
2、 products in the product distribution of different raw materials,lead to the economic benefits of products are different.So,seeking the economic benefits is the largest production plan.After deeply analysis is carried out on the question, Linear programming model is adopted to establish the mathemat
3、ical model,which with Matlab and Lingo software to solve the production problem.Key word: Economic benefits Linear programming model Matlab Lingo 目 录1、 问题的重述.12、 问题的分析.13、 问题假设.14、符号说明.25、模型的建立与求解.2 5.1、线性规划模型的简介.2 5.2、模型的建立.3 5.3、Matlab软件的简介.3 5.3.1、Matlab软件的求解.35.4、Lingo模型的简介.4 5.4.1、Lingo软件的求解 .4
4、5.5、对模型解的分析.56、 总结.5参考文献.6附录.7 有配套约束的资源优化问题1 问题的重述 某厂决意生产两种糖果:硬糖和软糖,糖果仅由糖,坚果和巧克力制成。你现在有100盎司糖,20盎司坚果,30盎司巧克力。软糖须含有至少20%的坚果,硬糖须含有至少10%的坚果和10%的巧克力。一盎司的软糖售价为25美分, 一盎司的硬糖售价为20美分。试安排生产计划使得工厂收入最大。 2 问题的分析 生产问题是一类常见的线性规划问题,在生产一种或者多种产品的时候,面对多种可选择的资源有多种不同的生产方案,与此同时不同的生产方案可以带来不同的产品效益,而选择不同的生产方案时所消耗的资源也不同,即导致成
5、本费用的差异。因此制定生产方案则是要解决在限定的资源下选择一套生产方案,使其满足各项约束条件的情况下同时达到最小成本,实现最大利润。题目中生产两种糖果,即硬糖和软糖,原料由糖、坚果和巧克力制成,三种原料的用量均有限制,两种糖果其中包含三种原料的含量也有最小要求,于是通过这些约束条件求得使得这两种糖果收入最大的生产方案。3 问题假设(1) 制造糖果的三种原料总量不会因为任何因素发生改变;(2) 每种糖果对原料的需求可以严格控制;(3) 糖果的生产过程是稳定,并没有技术问题;(4) 每种糖果的生产过程互不干扰;(5) 在生产时不会存在材料浪费的情况,即生产机器上不会沾到原料导致实际使用的原料与加入
6、原料量不相等 4 符号说明设以i表示糖果的种类,以j表示制造糖果所需要的原料,表示每种糖果所需要的每种原料的含量,具体对应关系如下表: 单位:盎司糖坚果巧克力硬糖(i)软糖(j)Z:生产硬糖和软糖的总收入5 模型的建立与求解5.1 线性规划模型的简介线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。线性规划问题的数学模型包括三个组成要素:(1) 决策变量:是模型所代表的系统中受到控制或能够控制的变量,表现为未知参数(变量),最后通过选定决策变量来实现最优解;(2) 约束条件:决策变量客观上必满足的限制条件,反映出实际问题中不受控制
7、的系统变量对受控制的决策变量的限制关系,包括等式约束和不等式约束;(3) 目标函数:模型所代表的性能指标,在模型中表现为决策变量的函数,反映了实际问题所要达到的理想目标,分为求最大值和最小值两种形式。如果规划问题的数学模型中,决策变量的取值是连续的,即可以为整数,也可以为分数、小数或实数,目标函数是决策变量的线性函数,约束条件是含决策变量的线性等式或不等式,则该类规划问题的数学模型称为线性规划的数学模型。 线性规划问题的数学模型的一般形式:(1) 列出目标函数及约束条件:(2) 画出约束条件所表示的可行域;(3) 在可行域内求目标函数的最优解。5.2 模型的建立目标函数为:各决策变量在其相关的
8、影响因素下所需满足的约束条件:5.3 Matlab软件的简介MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。是建立在向量,数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的啊“工具箱”。同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的实际问题,除了矩阵运算、绘制函数/数据图像等常用功能外,还包含功能强大的多个“工具箱”,如优化工具箱(optimization toolbox)、统计工具箱
9、、样条函数工具箱和数据拟合工具箱等都是优化计算的有力工具,在求解规划问题的应用也非常广泛。 5.3.1 Matlab求解在MATLAB的窗口输入下列程序(见附录),得到的结果为:Optimization terminated. 80.0000 10.0000 10.0000 20.0000 10.0000 20.0000 3.2500e+003即(1)硬糖的生产计划为:80盎司糖,10盎司坚果,10盎司巧克力; (2)软糖的生产计划为:20盎司糖,10盎司坚果,20盎司巧克力; (3)生产硬糖和软糖产生的最大收入为3250美分。5.4 Lingo软件的简介LINGO软件是美国的LINDO系统公
10、司(Lindo System Inc)开发的一套用于求解最优化问题的软件包。LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解等。LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等。LINGO既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建
11、模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型。 5.4.1 Lingo软件的求解采用Lingo软件中的线性规划模型得(源程序见附录):Global optimal solution found. Objective value: 3250.000 Infeasibilities: 0.000000 Total solver iterations: 5 Variable Value Reduced Cost X11 80.00000 0.000000 X12 10.00000 0.000000 X1
12、3 10.00000 0.000000 X21 20.00000 0.000000 X22 10.00000 0.000000 X23 20.00000 0.000000 Row Slack or Surplus Dual Price 1 3250.000 1.000000 2 0.000000 15.00000 3 0.000000 65.00000 4 0.000000 15.00000 5 0.000000 5.000000 6 0.000000 0.000000 7 0.000000 10.00000“Objective value:3250.000”表示最优目标值为3250。“Val
13、ue”给出最优解中各变量的值:最优生产计划是:生产硬糖需要80盎司的糖,10盎司的坚果和10盎司的巧克力;生产软糖需要20盎司的糖,10盎司的坚果和10盎司的巧克力。 5.5 对模型解的分析我们发现通过Matlab软件编程得到的结果与Lingo软件编程得到的结果相同,即生产计划为:生产硬糖需要80盎司的糖,10盎司的坚果和10盎司的巧克力;生产软糖需要20盎司的糖,10盎司的坚果和10盎司的巧克力。并且两种方法求解得到的最大收入都是3250美分,因此该计划是最优的生产计划。6 总结通过利用线性规划模型建立数学模型,并运用Matlab软件和Lingo软件对建立的数学模型进行求解,对该实际问题进行
14、了全面分析。从该工厂的产品生产问题中,我们了解到收入的最大化与原料的分配密切相关,且合理安排原料的种类和数量是减少资金的关键因素,从另一个角度也说明了运筹学在解决实际问题中的重要作用,以及其解决问题的优越性和灵活性。通过合理的分析与求解,使得该问题找到了最好的解决方法,实现了收入的最大化,也使得该模型更接近实际。这里所建立的模型和模型的求解方法具有一定的推广性和应用性。但模型在建立过程中,模型所运用的信息量比较小,为了便于问题的说明与讨论,通过假设,忽略了一些影响因素的限制(如原料是否浪费,生产机器条件的限制等),在这一点上,模型尚具有一些缺陷和不足,这是有待于进一步考虑并加以改善的地方。通过
15、这次课程设计我们知道,在通过线性规划解决实际生活,生产,运输等其他问题的时候,严谨全面的分析过程是十分重要。第 5 页 共 11 页 有配套约束的资源优化问题7 参考文献1 胡运权运筹学教程(第四版)M北京:清华大学出版社,2012:1-461.2 韩中庚实用运筹学模型、方法与计算M北京:清华大学出版社,2007:1-232.3 姜启源,谢金星,叶 俊编数学模型(第三版)M北京:高等教育出版社,2005:1-202.4谢金星等,优化建模与LINDO/LINGO软件,北京:清华大学出版社,2005年5 张明辉,王学辉等编著MATLAB6.1最新应用详解M北京:中国水利水电出版社,2001:1-180.第 7 页 共 11 页附录1、 Matlab源程序c=-20,-20,-20,-25,-25,-25;A=1,0,0,1,0,0;0,1,0,0,1,0;0,0,1,0,0,1;1,-9,1,0,0,0;1,1,-9,0,0,0;0,0,0,1,-4,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工呼吸设备产品供应链分析
- 卫生制剂零售或批发服务行业市场调研分析报告
- 个人背景调查行业相关项目经营管理报告
- 医用矿泉水产品供应链分析
- 工商业公司的商业管理辅助行业营销策略方案
- 为会议中心提供餐饮供应服务行业经营分析报告
- 家用杀真菌剂产品供应链分析
- 为企业提供商业咨询行业营销策略方案
- 电修部门的卓越之旅-半年成绩与未来展望
- 电动起重机项目营销计划书
- 小学四年级数学三位数除以两位数过关考核口算题带答案
- 2024年湖南湘潭市公安局招聘留置看护巡逻警务辅助人员28人历年高频难、易错点500题模拟试题附带答案详解
- 2024-2030年中国电表行业发展分析及投资前景预测研究报告
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务一)试题及答案
- 2024北京朝阳区高三二模数学试题及答案
- 科学脊梁钱学森人物介绍
- Module 6 Unit 2 Happy Mid-Autumn Festival(教学设计)-2024-2025学年外研版(三起)英语四年级上册
- 2024年细胞治疗行业营销策略方案
- 2024年北京市高考地理真题(原卷版)
- 教学成果奖培育思考
评论
0/150
提交评论