极限思想在函数题型中的应用_第1页
极限思想在函数题型中的应用_第2页
极限思想在函数题型中的应用_第3页
极限思想在函数题型中的应用_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    极限思想在函数题型中的应用    路畅通【摘要】极限思想是用极限概念分析问题和解决问题的一种数学思想,用好极限思想,能大大减少运算量,优化解题过程,降低解题难度,缩短解题时间,并且为今后更深层次的探究奠定坚实基础。【关键词】极限思想  函数  导数  函数值域  最值g633.6                            a     &#

2、160;2095-3089(2016)11-0011-02在高中学习中,我们接触了极限这一概念.极限在高中第一次被真正应用是在选修2-2(理科)中,用于引入导数.极限思想是用极限概念分析问题和解决问题的一种数学思想。如果接触足够多的函数与导数有关题目时,会发现极限的使用不仅仅局限于极限的定义,而是更为广泛,如求函数值域、最值等。在解题过程中用好极限思想,能大大减少运算量,优化解题过程,降低解题难度.因此我认为,有必要对极限有更进一步的认识。一、 求简单函数极限的方法极限的严格定义我们会在大学学习,在这里我们的目标只是求出函数某个值的极限。(1)简单的极限题目如下:此类题只需将值代入计算即可。(

3、2)还有一些极限略显复杂,如:,由于0不能做分母,而x=1时,x3-x=0.但 x2-2x+1与x3-x有公因式x-1,故先因式分解再约分最后代入计算:但如果分子与分母没有公因式呢?我们将会在第三部分一起探究。二、运用极限的运算法则求一些复杂函数的极限设,存在,且令则有以下运算法则,加减: 数乘:乘除: 冥运算有了运算法则,我们可以进行一些复杂函数的极限运算,如:对于分子分母都是多项式的函数,求x的极限,我们可以分子分母同除以自变量的最高次幂:由此,我们还可以得出结论:同类题目只需比较两个多项式最高次幂的系数。除此之外,还有许多不同类型的求极限题目,有不同的解题思路,如出现了根号,且出现了无穷

4、减无穷,则可以考虑分子有理化等。三、巧用洛必达法则,化繁为简洛必达法则是利用导数来计算或形式的极限的方法,巧用洛必达法则求函数极限,可以使问题简化。洛必达法则:设函数满足:以下是洛必达法则在高考中的应用:(2010年全国新课标理)设函数综合得a的取值范围为原解在处理第(2)问时较难想到,利用洛必达法则可简便处理:由洛必达法则知故综上,可知a的取值范围为.对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中求分离出来的函数式的最值问题有点麻烦,利用洛必达法则可以较好的处理它的最值。综上所述,极限思想在我们高中数学解题中,可以起到意想不到的作用.如果我们予以重视,既可以为我们的做题提供可能更为简单的思路,也可以为我们在大学的学习打下基础。故我

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论