版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【教育类精品资料】函数模型的应用实例1 1 一辆汽车在某段路程中一辆汽车在某段路程中的行驶速度与时间的关的行驶速度与时间的关系如图,系如图, (1 1)求图中阴影部)求图中阴影部分的面积,并说明所求分的面积,并说明所求面积的实际含义;面积的实际含义;解:阴影部分的面积为解:阴影部分的面积为50 180 1 90 1 75 1 65 1+=360 阴影部分的面积表示汽车在这阴影部分的面积表示汽车在这5小时内小时内行驶的路程为行驶的路程为360km.vt (h)5080907565(km/h)12345o(2 2)假设这辆汽车的里程表在汽)假设这辆汽车的里程表在汽车行驶这段路程前的读数为车行驶这段
2、路程前的读数为2004 2004 kmkm,试建立汽车行驶这段路程时,试建立汽车行驶这段路程时汽车里程表读数汽车里程表读数s kms km与时间与时间t ht h的的函数解析式,并作出相应的图象函数解析式,并作出相应的图象. .s=50t+2004, 0 t1,80(t-1)+2054, 1 t2,90(t-2)+2134, 2 t3,75(t-3)+2224, 3 t4,65(t-4)+2299, 4 t 5.o2000210022002300240012345ts.解:解:vt (h)5080907565(km/h)12345o2.人口问题是当今世界各国普遍关注的问题人口问题是当今世界各国
3、普遍关注的问题. 认识人口数量的变化规律,可以为有认识人口数量的变化规律,可以为有效控制人口增长提供依据效控制人口增长提供依据. 早在早在1798年,英国经济学家马尔萨斯就提出了年,英国经济学家马尔萨斯就提出了 自然状态下的人口增长模型:自然状态下的人口增长模型: y=y0ert 其中其中t表示经过的时间,表示经过的时间,y0表示表示t=0时的人口数,时的人口数,r表示人口的年平均增长率表示人口的年平均增长率. 下表是下表是19501959年我国的人口数据资料:年我国的人口数据资料: (1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精)如果以各年人口增长率的平均值作为我国这一时
4、期的人口增长率(精确到确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;长模型,并检验所得模型与实际人口数据是否相符; (2)如果按表的增长趋势,大约在哪一年我国的人口达到)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?亿?年份1950195119521953195419551956195719581959人数55196563005748258796602666145662828645636599467207 自然状态下的人口增长模型:自然状态下的人口增长模型:
5、y=y0ert (1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;验所得模型与实际人口数据是否相符;年份1950195119521953195419551956195719581959人数551965630057482587966026661456628286456365994672072.解:设解:设19511959年的人口增长
6、率分别为年的人口增长率分别为r1,r2,r9.由由55196(1+r1)=56300,可得可得1951年的人口增长率年的人口增长率r1 0.0200于是,于是, 19511959年期间,我国人口的年均增长率年期间,我国人口的年均增长率为为r=(r1+r2+r9) 9 0.0221 19511959年的人口增长模型为年的人口增长模型为.,551960221. 0nteyt ty1234567895000055000600006500070000o.(2)如果按表的增长趋势,大约)如果按表的增长趋势,大约在哪一年我国的人口达到在哪一年我国的人口达到13亿?亿?解:解: 将将y=130000代入代入
7、,551960221. 0tey 得得 t 38.76 所以,如果按所以,如果按表的增长趋势,大表的增长趋势,大约在约在1950年后的年后的39年(即年(即1989年)我年)我国的人口就已达到国的人口就已达到13亿。亿。你对此有何看你对此有何看法?法?小小 结结函数应用的一个基本过程:函数应用的一个基本过程:1、根据收集到的数据,作出散点图。、根据收集到的数据,作出散点图。2、通过观察图象判断问题所适用的函数模型,、通过观察图象判断问题所适用的函数模型,利用计算器或计算机的数据拟合功能得出具体利用计算器或计算机的数据拟合功能得出具体的函数解析式。的函数解析式。3、用得到的函数模型解决相应的问题
8、。、用得到的函数模型解决相应的问题。注意:注意:用已知的函数模型刻画实际问题时,由用已知的函数模型刻画实际问题时,由于实际问题的条件与于实际问题的条件与 得出已知模型的条件会有得出已知模型的条件会有所不同,因此往往需要对模型进行修正。所不同,因此往往需要对模型进行修正。自然状态下的人口增长模型:自然状态下的人口增长模型: y=y0ert练习:练习:1、已知、已知1650年世界人口为年世界人口为5亿,当时人口的年亿,当时人口的年增长率为增长率为0.3%;1970年世界人口为年世界人口为36 亿,当时人口亿,当时人口的年增长率为的年增长率为2.1%(1)用马尔萨斯人口模型计算,什么时候世界人口)用
9、马尔萨斯人口模型计算,什么时候世界人口是是1650年的年的2倍?什么时候世界人口是倍?什么时候世界人口是1970年的年的2倍?倍?(2)实际上,)实际上,1850年以前世界人口就超过了年以前世界人口就超过了10亿;亿;而而2003年世界人口还没有达到年世界人口还没有达到72 亿。你对同样的模型亿。你对同样的模型得出的两个结果有什么看法?得出的两个结果有什么看法?解:由题意得,解:由题意得,y=5e0.003t (t n)令令y=10, e0.003t=2, 0.003t=ln2, t 231所以,所以,1881年世界人口约为年世界人口约为1650 年的年的2倍。倍。同理可知,同理可知,2003
10、年世界人口数约为年世界人口数约为1970年的年的2 倍。倍。2、以、以v0 m/s的的 速速 度度 竖竖 直直 向向 上上 运运 动的物体,动的物体,t s后的高度后的高度h m满足满足h=v0t-4.9t2,速度速度v m/s满满足足v=v0-9.8t.现以现以75m/s的速度向上发射一发子的速度向上发射一发子弹,问弹,问 子子 弹弹 保保 持在持在100 m 以上的以上的 高度有多高度有多少秒少秒?在此过程中,子弹速度大小的范围是多在此过程中,子弹速度大小的范围是多少?少?解:由题意得,解:由题意得,75t-4.9t2=100,解得,解得,t1 1.480 , t2 13.827.所以,子弹保持在所以,子弹保持在1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盘锦金芳地丽都小区建设项目申请报告
- 肌肉痉挛病因介绍
- 睾丸肿大病因介绍
- 智能制造生产线技术及应用 教案 7-1 数控加工产线联调
- 2024版房地产买卖合同(含税费)3篇
- 四边形单元测试题课件
- 淋病性关节炎病因介绍
- (高考英语作文炼句)第2篇译文老师笔记
- 开题报告:指向创造性思维培养的工科大平台课程教师教学素养研究
- 开题报告:预防乡村校园欺凌-基于生命关怀主题的小学生命科学教育实践研究
- 2024名校版人教语文一年级上册第五单元测试卷含答案
- 脚手架受力计算书
- 承包学校食堂经营方案
- linux试题相关案例1架设一台DHCP服务器并按照下面的要求进行配置
- 鲍鱼养殖技术科学养殖
- 华东师大版七年级数学上册《平行线》教案
- 2023年供货方案 医疗器械供货方案(四篇)
- 2008大众朗逸维修手册带电路图培训版
- 杭师大心理学基础题库
- 农民工领取银行卡登记表
- 教学设计 平行四边形的面积(市一等奖)
评论
0/150
提交评论