离散化方法课件_第1页
离散化方法课件_第2页
离散化方法课件_第3页
离散化方法课件_第4页
离散化方法课件_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、离散化方法PPT课件二、离散化方法二、离散化方法离散化方法PPT课件离散化方法离散化方法离散化方法PPT课件计算区域和边界计算区域和边界o 计算区域计算区域: : 从实际问题抽象出来的物理数学模型从实际问题抽象出来的物理数学模型中所规定的物理量发生变化的主要区域。中所规定的物理量发生变化的主要区域。 线:直线线:直线 面:矩形、圆形、环形、扇形、环扇形面:矩形、圆形、环形、扇形、环扇形 体:立方体、球体、圆柱体体:立方体、球体、圆柱体o 边界:边界: 物理量发生变化的最大界限,或者所物理量发生变化的最大界限,或者所研究对象与外界的分界线。研究对象与外界的分界线。离散化方法PPT课件计算区域和边

2、界计算区域和边界突扩后台阶流动计算区域和边界:突扩后台阶流动计算区域和边界:离散化方法PPT课件计算区域和边界计算区域和边界埋地热油管道土壤传热计算区域和边界:埋地热油管道土壤传热计算区域和边界:ox土壤管道和防腐层等大气地表向热力影响区 yH0管道埋深y向热力xH影响区2L离散化方法PPT课件计算区域和边界计算区域和边界o 确定计算区域和边界的原则确定计算区域和边界的原则: :o 取决于物理问题本身,不能随意取取决于物理问题本身,不能随意取o 有一定的灵活性有一定的灵活性o 包含所研究问题的全部特征或近似全部的包含所研究问题的全部特征或近似全部的特征。特征。o 与所采用的物理模型或数值方法有

3、关与所采用的物理模型或数值方法有关离散化方法PPT课件计算区域离散化计算区域离散化o 计算区域的离散化计算区域的离散化: : 对空间上连续的计算区域进行剖分,对空间上连续的计算区域进行剖分,划分成许多子区域。实质上就是用一组有划分成许多子区域。实质上就是用一组有限个离散的点来代替原来的连续空间。限个离散的点来代替原来的连续空间。体区域的离散体区域的离散线区域的离散线区域的离散面区域的离散面区域的离散离散化方法PPT课件计算区域离散化计算区域离散化o 计算区域离散化的基本步骤计算区域离散化的基本步骤: :o 将计算区域边界线用若干个点划分为若干段将计算区域边界线用若干个点划分为若干段o 按照计算

4、区域的形状连接这些点将计算区域划按照计算区域的形状连接这些点将计算区域划分为互不重叠的若干个子区域分为互不重叠的若干个子区域( (网格网格) )o 确定物理量代表点确定物理量代表点( (节点节点) )在子区域中的位置在子区域中的位置是否唯一的离散方式?是否唯一的离散方式?离散化方法PPT课件计算区域离散化计算区域离散化o 节点节点: :n 内部节点内部节点n 边界节点边界节点n 节点的编号和间距节点的编号和间距o 网格:网格:n 均分网格均分网格n 非均分网格非均分网格n 网格的命名和步长网格的命名和步长离散化方法PPT课件边界条件边界条件o 边界条件边界条件: : 物理模型在边界上遵循的规律

5、或具有物理模型在边界上遵循的规律或具有的特点,方程组的解在边界上应满足的条的特点,方程组的解在边界上应满足的条件。件。o 最重要、最复杂的约束条件最重要、最复杂的约束条件o 对象与外界联系和相互作用的规律对象与外界联系和相互作用的规律o 往往影响数值计算的成败往往影响数值计算的成败离散化方法PPT课件边界条件边界条件o 边界条件分类边界条件分类: :o 第一类边界条件第一类边界条件 边界上给定待求变量的函数关系边界上给定待求变量的函数关系o 第二类边界条件第二类边界条件 边界上给定待求变量梯度的函数关系边界上给定待求变量梯度的函数关系o 第三类边界条件第三类边界条件 边界上给定待求变量与其梯度

6、之间的函数关系边界上给定待求变量与其梯度之间的函数关系具有相对性具有相对性离散化方法PPT课件常用边界条件举例常用边界条件举例o 恒壁温边界条件恒壁温边界条件o 恒热流边界条件恒热流边界条件o 绝热边界条件绝热边界条件o 对称边界条件对称边界条件o 周期性边界条件周期性边界条件o 入口出口边界条件入口出口边界条件离散化方法PPT课件常用边界条件举例常用边界条件举例airToilTp ( (第二类边界条件第二类边界条件) ) (第三类边界条件)(第三类边界条件) T=C ( (第一类边界条件第一类边界条件) ) (第二类边界条件)(第二类边界条件) (第三类边界条件)(第三类边界条件)0 xT0

7、 xTyTTTairf)(T|rr RpoilwTT 绝热绝热x 对称对称、 恒温层恒温层y离散化方法PPT课件常用边界条件举例常用边界条件举例离散化方法PPT课件流动传热控制方程流动传热控制方程o 控制方程控制方程: : 物理模型所用的数学表达式,控制物理量物理模型所用的数学表达式,控制物理量的变化规律。的变化规律。o 质量守恒方程质量守恒方程: :()0Ut离散化方法PPT课件流动传热控制方程流动传热控制方程o 动量守恒方程动量守恒方程: :()div()div( grad )()div()div( grad )()div()div( grad )uvwupuUuStxpUStywpwUw

8、Stz()div()=div()ppTc Tc UTgradTSto 能量守恒方程能量守恒方程: :离散化方法PPT课件流动传热控制方程流动传热控制方程o 不可压缩流体流动方程组不可压缩流体流动方程组: :0uvxy22221uuupuuuvtxyxxy 22221vvvpvvuvtxyyxy o 导热方程导热方程: :()=pTc TTTStxxyy离散化方法PPT课件控制方程的离散化控制方程的离散化o 控制方程仅在极少数特殊情况下有解析解控制方程仅在极少数特殊情况下有解析解0uvxy22221uuupuuuvtxyxxy 22221vvvpvvuvtxyyxy 沿沿x方向压力梯度为定值的平

9、板定常层流方向压力梯度为定值的平板定常层流离散化方法PPT课件控制方程的离散化控制方程的离散化o 控制方程仅在极少数特殊情况下有解析解控制方程仅在极少数特殊情况下有解析解221=upCyx1=uCycy212=2C yuc yc两次不定积分两次不定积分平板边界条件平板边界条件0,0;,0yuyh u解析解解析解2=2Cuyh离散化方法PPT课件控制方程的离散化控制方程的离散化o 控制方程仅在极少数特殊情况下有解析解控制方程仅在极少数特殊情况下有解析解沿沿x方向一维无源稳态导热方向一维无源稳态导热()=pTc TTTStxxyy0Txx两次不定积分两次不定积分1Tcx12cTxc恒温边界条件恒温

10、边界条件120,;,xTT xl TT解析解解析解211TTTxTl离散化方法PPT课件控制方程的离散化控制方程的离散化o 一般情况下无法作上述化简一般情况下无法作上述化简o 解决途径:解决途径:离散化后再求解离散化后再求解o 控制方程离散化:控制方程离散化: 用离散的计算区域中的节点上的变量用离散的计算区域中的节点上的变量及其导数值来代替控制方程中的连续函数。及其导数值来代替控制方程中的连续函数。o 方程离散化的两类基本方法:方程离散化的两类基本方法: 有限差分法有限差分法 有限容积法有限容积法离散化方法PPT课件控制方程的离散化控制方程的离散化o 有限差分法:有限差分法: 利用泰勒展开将控制方程中的所有导利用泰勒展开将控制方程中的所有导数项表示成有限个节点值的代数组合,从数项表示成有限个节点值的代数组合,从而将微分方程表示成差分方程。而将微分方程表示成差分方程。2200002( )()()2nxxfff xf xxxo xxxx)(2)()(222nxoxxfxxfxfxxf 截断误差及其阶数截断误

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论