![锐角三角函数投影与视图复习导学案_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/1faa79ce-f36c-465c-92cc-ff5c1944c82c/1faa79ce-f36c-465c-92cc-ff5c1944c82c1.gif)
![锐角三角函数投影与视图复习导学案_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/1faa79ce-f36c-465c-92cc-ff5c1944c82c/1faa79ce-f36c-465c-92cc-ff5c1944c82c2.gif)
![锐角三角函数投影与视图复习导学案_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/1faa79ce-f36c-465c-92cc-ff5c1944c82c/1faa79ce-f36c-465c-92cc-ff5c1944c82c3.gif)
![锐角三角函数投影与视图复习导学案_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/1faa79ce-f36c-465c-92cc-ff5c1944c82c/1faa79ce-f36c-465c-92cc-ff5c1944c82c4.gif)
![锐角三角函数投影与视图复习导学案_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/1faa79ce-f36c-465c-92cc-ff5c1944c82c/1faa79ce-f36c-465c-92cc-ff5c1944c82c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十八章 锐角三角函数复习学案一、锐角三角函数的概念 (38分) 1、如图,在ABC中,C=90° 锐角A的对边与斜边的比叫做A的正弦,记为sinA(或者sin ,sin ), 即锐角A的邻边与斜边的比叫做A的余弦,记为cosA, 即锐角A的对边与邻边的比叫做A的正切,记为tanA,即锐角A的邻边与对边的比叫做A的余切,记为cotA,即2、锐角三角函数的概念EOABCD·锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数(1)、如图,在RtABC中,A
2、CB90°,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD(2)、如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= 二、各锐角三角函数之间的关系(可通过线段比值来证明)(1)互余关系一个锐角的正弦值等于它余角的余弦值sinA=cosB=cos(90°A),一个锐角的余弦值等于它余角的正弦值cosA=sinB=sin(90°A),一个锐角的正切值等于它余角的余切值tanA=cotB=cot(90°A),一个锐角的余切值等于它余角的正切值cotA=tanB=tan(90°A)(2)平
3、方关系同一个锐角的正弦与余弦的平方和等于1(3)倒数关系同一个锐角的正切与余切之积为1,即tanAcotA=1(4)弦切关系tanA= cotA=5、锐角三角函数的增减性当角度在0°90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小), 01(2)余弦值随着角度的增大(或减小)而减小(或增大), 01(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)三、一些特殊角的三角函数值三角函数 0° 30° 45° 60° 90°sin01cos10tan01不存
4、在cot不存在10求下列各式的值 (1)sin30°·cos45°+cos60° (2)2sin60°-2cos30°·sin45°(3); (4)-sin60°(1-sin30°) (5)tan45°·sin60°-4sin30°·cos45°+·tan30°2 / 15四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知
5、元素的过程叫做解直角三角形。2、解直角三角形的理论依据在RtABC中,C=90°,A,B,C所对的边分别为a,b,c(1)三边之间的关系:(勾股定理)(2)锐角之间的关系:A+B=90°(3)边角之间的关系: 3、仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角例:如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?4、坡度与坡角 坡面的铅直高度h和水平宽度的比叫做坡度(或叫做坡比),
6、一般用i表示。即,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角叫做坡角结合图形思考,坡度i与坡角之间具有什么关系? 例:同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=13,斜坡CD的坡度i=12.5,求斜坡AB的坡面角,坝底宽AD和斜坡AB的长(精确到0.1m)例3如图5,某防洪指挥部发现长江边一处长500米,高I0米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固。并使上底加
7、宽3米,加固后背水坡EF的坡比i=1:。(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)课后练习一判断下列说法是否正确i 对于任意锐角,都有0sin1和0cos1 ( )ii 对于任意锐角1,2,如果12,那么cos1cos2 ( )iii 如果sin1sin2,那么锐角1锐角2I
8、; ( )iv 如果cos1cos2,那么锐角1锐角2
9、160; ( )二选择1.在RtABC中,下列式子中不一定成立的是_AsinAsinB BcosAsinB CsinAcosB Dsin(A+B)sinC2.在A0°A30° B30°A45°C45A60° D60°A90°5RtABC中,C=90°,A、
10、B、C的对边分别是a、b、c,且c=3b,则cosA= 6ABC中,C=90°,若BC=4,sinA=,则AC的长是 7在RtABC中,C=90°,已知tanB=,那么cosA的值是 8某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为米,则这个坡面的坡度为 9在平面直角坐标系xOy中,已知一次函数y=kx+b(k0)的图像过点P(1,1),与x轴交于点A,与y轴交于点B,且,那么点A的坐标是 ··10如图,是一张宽的矩形台球桌,一球从点(点在长边上)出发沿虚线射向边,然后反弹到边上的点. 如果,.那么点与点的距离为 11 如果方程的两个
11、根分别是RtABC的两条边,ABC最小的角为A,那么tanA的值为 ABCD随堂演练:1如图,已知RtABC中,斜边BC上的高AD=4,cosB=,则AC=_2将半径为10cm,弧长为12的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 3如图,RtABC中,C90°,D是BC上一点,DAC=30°,BD2,AB2;则AC的长是 4如图,ABC中,AB=AC,点D在AC上,DEBC,垂足是E,若AD2DC,AB4DE,则sinB等于 5如图,AB是伸缩性遮阳棚,CD是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB的长度是 (假如夏至正午时的阳光与地
12、平面的夹角是600)6 如图,将矩形纸片()的一角沿着过点的直线折叠,使点落在边上,落点为,折痕交边交于点.若,则_;若,则=_(用含有、的代数式表示)CABD阳光1米2米7如图,ABC中,B=30°,C=45°,ABAC=2,求BC的长。8.如图,BD为O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4. (1)求证: ;(2) 求的值; (3)延长BC至F,连接FD,使的面积等于,求的度数.9南平是海峡西岸经济区的绿色腹地.如图所示,我市的A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西
13、方向上.现计划修建的一条高速铁路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内.请问这条高速铁路会不会穿越保护区,为什么?ABP北北10.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)11如图所示,小杨在广场上的A处正面观测一
14、座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30º,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45º若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐求广告屏幕上端与下端之间的距离(1.732,结果精确到0.1m)ABCDE12已知:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC20m,斜坡坡面上的影长CD8m,太阳光线AD与水平地面成26°角,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m)
15、第二十九章投影与视图复习学案课题:29.1投影一、教学目标:1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。二、教学重、难点教学重点:理解平行投影和中心投影的特征;教学难点:在投影面上画出平面图形的平行投影或中心投影。一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(
16、简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影. 探究平行投影和中心投影和性质和区别4、请观察平行投影和中心投影,它们有什么相同点与不同点?平行投影与中心投影的区别与联系区 别联系光 线物体与投影面平行时的投影平行投影平行的投射线全等都是物体在光线的照射下,在某个平面内形成的影子。(即都是投影)中心投影从一点出发的投射线放大(位似变换)下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?指出:在平行投影中,如果投射线垂直于投影面,那么这种投
17、影就称为正投影。(二)合作学习,探究新知1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面, (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状 通过观察,我们可以发现;(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB = A1B1 (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2
18、,线段与它的投影的大小关系为AB > A2B2(3)当线段AB垂直于投影面P时,它的正投影是一个点A32、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面结论(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时. P的正投影与P的形状、大小发生变化;(3)当纸板P垂直于投影面Q时. P的正投影成为一条线段.当物体的某个面平行
19、于投影面时,这个面的正投影与这个面的形状、大小完全相同.例1、A、B 表示教室门口,张丽在教室内,王明、钱勇、李杰三同学在教室外,位置如图所示,张丽能看得见三位同学吗?请说明理由。例、如右上图,小王、小李及一根电线杆在灯光下的影子。()确定光源的位置;()在图中画出表示电线杆高度的线段。课题 29.2 三视图如图 (1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向
20、右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等。通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯
21、视图,侧投影面上的正投影就是左视图,看得见的画实线,看不见的画虚线。例1画出下图2所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为: 1.确定主视图的位置,画出主视图; 2.在主视图正下方画出俯视图,注意与主视图“长对正”。3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:2、你能画出下图1中几何体的三视图吗 小明画出了它们的三种视图(图2),他画的对吗 请你判断一下.3、做一做:画出下列几何体的三视图4、下面的三视图说出立体图形的名称.5、如图放置的一个水管三叉接头,若其正视图如图,则其俯视图是( )6、如图,是有几个相同的小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国新式茶饮行业市场竞争格局及投资方向研究报告(智研咨询)
- 七年级下册《三元一次方程组的解法》课件与练习
- 构建平台用户个人信息保护制度
- 2025年卫星数据采集系统项目合作计划书
- 农业技术研发推广合作协议
- 装修房屋委托合同
- 餐饮业食品安全保障与事故免责协议书
- 2025年工业废气净化装置项目发展计划
- 2025年微球载体材料项目发展计划
- 医疗美容服务项目风险告知与免责协议
- 研学旅行概论教学课件汇总完整版电子教案
- 控股集团公司组织架构图.docx
- DB11_T1713-2020 城市综合管廊工程资料管理规程
- 最常用2000个英语单词_(全部标有注释)字母排序
- 气管套管滑脱急救知识分享
- 特种设备自检自查表
- 省政府审批单独选址项目用地市级审查报告文本格式
- 往复式压缩机安装方案
- 汉字的演变甲骨文PPT课件
- 在银行大零售业务工作会议上的讲话讲解学习
- 古代传说中的艺术形象-
评论
0/150
提交评论