(完整版)16.2.2二次根式的除法课件_第1页
(完整版)16.2.2二次根式的除法课件_第2页
(完整版)16.2.2二次根式的除法课件_第3页
(完整版)16.2.2二次根式的除法课件_第4页
(完整版)16.2.2二次根式的除法课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级下册16.2.2二次根式的除法学习目标 会进行简单的二次根式的除法运算. 能利用商的算术平方根的性质进行二次根式的化简与运算.12 如果矩形的面积是 ,长为 ,求宽.205提示520205b =?这是最终结果吗?这个结果能否继续化简?如何化简? 活动探究探究一:二次根式除法的运算法则24()4= ()()()99 ;4499232323=0.25()0.25()=()=()()0.36()0.36;0.50.6562536560.250.250.360.36=活动探究 从中你发现了什么规律?4499=0.250.250.360.36=活动探究1616=(),();25253636=(),

2、();4949 计计算算下下列列各各式式,观观察察计计算算结结果果,你你能能发发现现什什么么规规律律?(1 1)(2 2)45456767aabb 活动探究二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.aabb (00)ab,活动探究例1 计算: (1) (2) 243;31218 24(1)3 31218 31(2)218 31822438 422 2 23333解:典例精讲把 反过来,就得到aabb (0)0abaabb ,利用它可以进行二次根式的化简.探究二:二次根式除法法则的逆运用活动探究例2 化简: 75(2)273(1)100( )31=100( )752=2731

3、003=10225333225=35=3解:典例精讲 33 281235272a()31=5例3 计算: 解:353 5=5 5215=515=5还有其他解法吗?3=53555215( 5) 155 把分母中的根号化去,使分母变成有理数,这个过程叫做分母有理化.典例精讲 33 281235272a( )3 22=27( )83=2a例3 计算: 23 23323 2=332=323=336=38222aaa42aa2 aa典例精讲按照例题化简下列式子.33325183 84 2182x 2342 34 2 324 22 64 2 68 2532 53 2 523 22 103 2 106 3

4、824 22 3 442 32 318222xxx 4364xx 23 xx 这些最终化简的式子有什么特点呢?举一反三二次根式的运算结果有以下特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.即被开方数必须是整数(式)探究三:最简二次根式活动探究讨论:二次根式的运算结果有什么特点?下列二次根式是否是最简二次根式?为什么?1322221.8 ;10;2;aa babab 被开方数非整数被开方数非整数含可开方的因式活动探究 化简下列二次根式,并用最简二次根式的特点验证化简是否彻底.4232;1.5;1.37232424 2

5、; 422 3;333361.5;22293 71.777举一反三例4 设长方形的面积为s,相邻两边长分别为a,b.已知s=2 ,b= ,求a.310=,2 32 31030 =5101010s absab 解解:因因为为所所以以 在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.典例精讲1.如果等式 成立,那么( )a.x0 b.x3c.x3d.x3b2.下列各式中,是最简二次根式的是( )c2222a. 18b.c.d.3a bab 33xxxx 随堂检测3.3(1)63(2)2 311(3)28(4) 27506(5) 6 ( 23) 计计算算:366 62

6、332 33 32 11281824 2 27 5069 2515 661 随堂检测课堂总结aabb (00)ab ,今天你学到了哪些知识?二次根式的除法运算法则是?二次根式化简后的结果有什么特征?(1) 被开方数必须是整数(式),(2)被开方数不含可开方的因数或因式,(3) 分母不含二次根式.1.5 5.mnmnm 是同类最简二次根式,则若和2.324.xx, 已知方程则62 2个性化作业3.如图,在rtabc中,c=90,ac= ,sabc= ,求ab的长.个性化作业解:sabc=2 312ac bc12 32bc 3 15 3 5bc 2222(2 3)(3 5)57abacbc 3 15abc在rtabc中,由勾股定理得:1111() ( 111)2132231110l 4 4. .计计算算:1111() ( 111)2132231110213211

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论