基因的表达和调控上_第1页
基因的表达和调控上_第2页
基因的表达和调控上_第3页
基因的表达和调控上_第4页
基因的表达和调控上_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章第六章 基因的表达与调控基因的表达与调控( (上上) ) 原核基因表达调控模式原核基因表达调控模式DNARNA蛋白质复制转录翻译逆转录RNA复制Contents基因表达调控的基本概念基因表达调控的基本概念原核基因调控机制原核基因调控机制乳糖操纵子乳糖操纵子色氨酸操纵子色氨酸操纵子其他操纵子其他操纵子转录后水平上的调控转录后水平上的调控第一节第一节 基因表达调控的基本概念基因表达调控的基本概念 :基因转录及翻译的过程。对这个过程的调节就称为gene regulationgene regulation 。 组成性表达(constitutive expression) 适应性表达(adapti

2、ve expression)二、基因表达的方式二、基因表达的方式 1 1、组成性表达:组成性表达: 指不大受环境变动而变化的一类基因表达。某些基因在一个个体的几乎所有细胞中持续表达,某些基因在一个个体的几乎所有细胞中持续表达,通常被称为通常被称为管家基因管家基因(housekeeping gene)。 2、适应性表达适应性表达指环境的变化容易使其表达水平变动的一类基因表达。指环境的变化容易使其表达水平变动的一类基因表达。 应环境条件变化基因表达水平增高的现象称为诱应环境条件变化基因表达水平增高的现象称为诱导导(induction),这类基因被称为,这类基因被称为可诱导的基因可诱导的基因(ind

3、ucible gene); 相反,随环境条件变化而基因表达水平降低的现相反,随环境条件变化而基因表达水平降低的现象称为阻遏象称为阻遏(repression),相应的基因被称为,相应的基因被称为可阻遏的可阻遏的基因基因(repressible gene)。 三、基因表达的规律三、基因表达的规律 时间性和空间性时间性和空间性1、时间特异性(、时间特异性(temporal specificitytemporal specificity)按功能需要,某一特定基因的表达严格按按功能需要,某一特定基因的表达严格按特定的时间顺序发生,称之为基因表达的特定的时间顺序发生,称之为基因表达的时间时间特异性特异性。

4、多细胞生物基因表达的时间特异性又称多细胞生物基因表达的时间特异性又称阶阶段特异性段特异性(stage specificity)。 2、空间特异性、空间特异性(spatial specificity)基因表达伴随时间顺序所表现出的这种分基因表达伴随时间顺序所表现出的这种分布差异,实际上是由细胞在器官的分布决定的,布差异,实际上是由细胞在器官的分布决定的,所以空间特异性又称所以空间特异性又称细胞或组织特异性细胞或组织特异性(cell or tissue specificity)。在个体生长全过程,某种基因产物在个体在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现,按不同组织空间顺序出现,

5、称之为基因表达的称之为基因表达的空间特异性空间特异性。四、基因表达调控的生物学意义四、基因表达调控的生物学意义 适应环境、维持生长和增殖(原核、真核) 维持个体发育与分化(真核)Contents基因表达调控的基本概念基因表达调控的基本概念原核基因调控机制原核基因调控机制乳糖操纵子乳糖操纵子色氨酸操纵子色氨酸操纵子其他操纵子其他操纵子转录后水平上的调控转录后水平上的调控第二节第二节 原核基因调控机制原核基因调控机制内容提要:原核基因表达调控环节原核基因表达调控环节操纵子学说操纵子学说原核基因调控机制的类型与特点原核基因调控机制的类型与特点转录水平上调控的其他形式转录水平上调控的其他形式 一、原核

6、基因表达调控环节一、原核基因表达调控环节1 1、转录水平上的调控、转录水平上的调控(transcriptional regulationtranscriptional regulation)2 2、转录后水平上的调控、转录后水平上的调控(post-transcriptional regulationpost-transcriptional regulation) mRNAmRNA加工成熟水平上的调控加工成熟水平上的调控 翻译水平上的调控翻译水平上的调控二、操纵子学说二、操纵子学说1 1、操纵子模型的提出、操纵子模型的提出19611961年,年,MonodMonod和和JacobJacob提出提

7、出获获19651965年诺贝尔生理学和医学奖年诺贝尔生理学和医学奖Jacob and Monod2、操纵子的定义、操纵子的定义操纵子操纵子:是基因表达的协调单位,由启动子、操纵是基因表达的协调单位,由启动子、操纵基因及其所控制的一组功能上相关的结构基因所组基因及其所控制的一组功能上相关的结构基因所组成。操纵基因受调节基因产物的控制。成。操纵基因受调节基因产物的控制。1 1、根据操纵子对调节蛋白(阻遏蛋白或激活蛋白)、根据操纵子对调节蛋白(阻遏蛋白或激活蛋白) 的应答,可分为:的应答,可分为: 正转录调控正转录调控 负转录调控负转录调控 三、三、原核基因调控机制的类型与特点原核基因调控机制的类型

8、与特点调节基因调节基因操纵基因操纵基因结构基因结构基因阻遏蛋白阻遏蛋白激活蛋白激活蛋白正转录调控正转录调控负转录调控负转录调控正转录调控如果在没有调节蛋白质存在时基因是关闭的,加入这种调节蛋白质后基因活性就被开启,这样的调控正转录调控。调节基因调节基因操纵基因操纵基因结构基因结构基因阻遏蛋白阻遏蛋白激活蛋白激活蛋白正转录调控正转录调控负转录调控负转录调控负转录调控在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调控负转录调控。 可诱导调节:指一些基因在特殊的代谢物或化合物的作用下,由原来关闭的状态转变为工作状态,即在某些物质的诱导下使基因活化。 例:大肠杆菌

9、的乳糖操纵子 分解代谢蛋白的基因2、根据操纵子对某些能调节它们的小分子的应答,可分为可诱导调节和可阻遏调节两大类:调节基因调节基因操纵基因操纵基因结构基因结构基因阻遏蛋白阻遏蛋白调节基因调节基因操纵基因操纵基因结构基因结构基因阻遏蛋白阻遏蛋白诱导物诱导物mRNA酶蛋白酶蛋白酶合成的诱导操纵子模型酶合成的诱导操纵子模型诱导物如果某种物质能够促使细菌产生酶来分解它,这种物质就是诱导物。 可阻遏调节:可阻遏调节:基因平时是开启的,处在产生蛋白质基因平时是开启的,处在产生蛋白质或酶的工作过程中,由于一些特殊代谢物或化合物或酶的工作过程中,由于一些特殊代谢物或化合物的积累而将其关闭,阻遏了基因的表达。的

10、积累而将其关闭,阻遏了基因的表达。 例:例:色氨酸操纵子色氨酸操纵子 合成代谢蛋白的基因酶合成的酶合成的阻遏阻遏操纵子模型操纵子模型调节基因调节基因操纵基因操纵基因结构基因结构基因mRNAmRNA酶蛋白酶蛋白调节基因调节基因操纵基因操纵基因结构基因结构基因辅阻遏物辅阻遏物辐阻遏物如果某种物质能够阻止细菌产生合成这种物质的酶,这种物质就是辅阻遏物。3、在、在负转录调控系统负转录调控系统中,调节基因的产物是中,调节基因的产物是阻遏蛋阻遏蛋白白(repressor),起着阻止结构基因转录的作用。),起着阻止结构基因转录的作用。 根据其作用特征又可分为根据其作用特征又可分为负控诱导负控诱导和和负控阻遏

11、负控阻遏: 在在负控诱导负控诱导系统中,阻遏蛋白与效应物(诱导物)系统中,阻遏蛋白与效应物(诱导物)结合时,结构基因转录;结合时,结构基因转录; 在在负控阻遏负控阻遏系统中,阻遏蛋白与效应物(辅阻遏物)系统中,阻遏蛋白与效应物(辅阻遏物)结合时,结构基因不转录。结合时,结构基因不转录。4 4、在、在正转录调控正转录调控系统中,调节基因的产物是系统中,调节基因的产物是激活蛋激活蛋白白(activator)。)。 根据激活蛋白的作用性质分为根据激活蛋白的作用性质分为正控诱导正控诱导和和正控阻遏正控阻遏 在在正控诱导正控诱导系统中,效应物分子(诱导物)的存在系统中,效应物分子(诱导物)的存在使激活蛋

12、白处于活性状态;使激活蛋白处于活性状态; 在在正控阻遏正控阻遏系统中,效应物分子(系统中,效应物分子(辅阻遏物)辅阻遏物)的存的存在使激活蛋白处于非活性状态在使激活蛋白处于非活性状态。四、转录水平上调控的其他形式四、转录水平上调控的其他形式1、降解物对基因活性的调节2、 弱化子对基因活性的影响Contents基因表达调控的基本概念基因表达调控的基本概念原核基因调控机制原核基因调控机制乳糖操纵子乳糖操纵子色氨酸操纵子色氨酸操纵子其他操纵子其他操纵子转录后水平上的调控转录后水平上的调控第三节第三节 乳糖操纵子乳糖操纵子( (laclac operonoperon) )内容提要:内容提要:乳糖操纵子

13、的结构乳糖操纵子的结构酶的诱导酶的诱导laclac体系受调控的证据体系受调控的证据乳糖操纵子调控模型乳糖操纵子调控模型影响因子影响因子LacLac操纵子中的其他问题操纵子中的其他问题一、乳糖操纵子的结构一、乳糖操纵子的结构 Z编码-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖 Y编码-半乳糖苷透过酶:使外界的-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。 A编码-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到-半乳糖苷上,形成乙酰半乳糖。二、酶的诱导二、酶的诱导laclac体系受调控的证据体系受调控的证据 安慰诱导物: 如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安

14、慰诱导物,如IPTG(异丙基- D-硫代半乳糖苷)。 CH2OH CH3 HO O SCCH3 H CH3 OH HH H H OH图 16-6 异丙基-硫代半乳糖苷的分子结构三、乳糖操纵子调控模型三、乳糖操纵子调控模型主要内容:主要内容: Z、Y、A基因的产物由同一条多顺反子的基因的产物由同一条多顺反子的mRNA分子所编码分子所编码 这个这个mRNA分子的启动子紧接着分子的启动子紧接着O区,而位于区,而位于I与与O之间的启动子区(之间的启动子区(P),不能单独起动合),不能单独起动合成成-半乳糖苷酶和透过酶的生理过程。半乳糖苷酶和透过酶的生理过程。 操纵基因是操纵基因是DNA上的一小段序列(

15、仅为上的一小段序列(仅为26bp),),是阻遏物的结合位点。是阻遏物的结合位点。RNA聚合酶结合部位聚合酶结合部位阻遏物结合部位阻遏物结合部位 操纵位点的回文序列 当阻遏物与操纵基因结合时,当阻遏物与操纵基因结合时,laclac mRNA mRNA的转的转录起始受到抑制。录起始受到抑制。 未诱导:结构基因被阻遏 阻遏物 四聚体 LacI P O lacZ lacY lacA 图 16- 当无诱导物时阻遏物结合在操纵基因上 诱导物通过与阻遏物结合,改变它的三维构象,诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发使之不能与操纵基因结合,从而激发lac mRNA的合成。当

16、有诱导物存在时,操纵基因区没有被的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始阻遏物占据,所以启动子能够顺利起始mRNA的的合成。合成。 诱导:基因被打开 -半乳糖苷酶 透性酶 乙酰转移酶 图 16-7 诱导物和阻遏物成为调节操纵子的开关 组成型突变: lacOc 组成型突变: lacI- Repressor has lost lacI S genesythesizes Iducer-binding site defective repressor that cannot bind inducer; it binds permanently to operator

17、 lacI S Operantor lacI + wild-type repressor does not influence DNA-binding of LacS repressor 图图 16- Uninducible lac S mutations are dominant 不可诱导突变(超阻遏):四、影响因子四、影响因子1、lac操纵子的本底水平表达有两个矛盾是操纵子理论所不能解释的:诱导物需要穿过细胞膜才能与阻遏物结合,而转运诱导物需要透过酶,后者的合成有需要诱导。解释:一些诱导物可以在透过酶不存在时进入细胞? 一些透过酶可以在没有诱导物的情况下合成?真正的诱导物是异构乳糖而非乳糖

18、,前者是在真正的诱导物是异构乳糖而非乳糖,前者是在- -半乳糖甘酶的催化下由乳糖形成的,因此,半乳糖甘酶的催化下由乳糖形成的,因此,需要有需要有- -半乳糖甘酶的预先存在。半乳糖甘酶的预先存在。解释:解释:本底水平的组成型合成:非诱导状态下有少量的本底水平的组成型合成:非诱导状态下有少量的lac mRNA合成。合成。2、大肠杆菌对乳糖的反应 培养基:甘油培养基:甘油 按照按照lac操纵子本底水平的表达,每个细胞内有几个操纵子本底水平的表达,每个细胞内有几个分子的分子的-半乳糖苷酶和半乳糖苷酶和-半乳糖苷透过酶;半乳糖苷透过酶;培养基:加入乳糖培养基:加入乳糖少量乳糖少量乳糖透过酶透过酶进入细胞

19、进入细胞-半乳糖苷酶半乳糖苷酶异构乳糖异构乳糖诱导物诱导物诱导诱导lac mRNA的生物合成的生物合成大量乳糖进入细胞大量乳糖进入细胞多数被降解为葡萄糖和半乳糖(碳源和能源)多数被降解为葡萄糖和半乳糖(碳源和能源)异构乳糖异构乳糖诱导物的加入和去除对lac mRNA的影响3、阻遏物lac I基因产物及功能 Lac Lac 操纵子阻遏物操纵子阻遏物mRNA是由弱启动子控制下组是由弱启动子控制下组成型合成的,每个细胞中有成型合成的,每个细胞中有5-10个阻遏物分子。个阻遏物分子。 当当I基因由弱启动子突变成强启动子,细胞内就不基因由弱启动子突变成强启动子,细胞内就不可能产生足够的诱导物来克服阻遏状

20、态,整个可能产生足够的诱导物来克服阻遏状态,整个lac操纵子在这些突变体中就不可诱导。操纵子在这些突变体中就不可诱导。4、葡萄糖对lac操纵子的影响 如果将葡萄糖和乳糖同时加入培养基中如果将葡萄糖和乳糖同时加入培养基中, laclac操纵子处于阻遏状态,不能被诱导;一旦耗尽操纵子处于阻遏状态,不能被诱导;一旦耗尽外源葡萄糖,乳糖就会诱导外源葡萄糖,乳糖就会诱导laclac操纵子表达分操纵子表达分解乳糖所需的三种酶。解乳糖所需的三种酶。 代谢物阻遏效应代谢物阻遏效应5 5、cAMPcAMP与代谢物激活蛋白与代谢物激活蛋白代谢物激活蛋白(代谢物激活蛋白(CAP)/环腺甘酸受体蛋白(环腺甘酸受体蛋白

21、(CRP) ZYAOPDNA 调控区调控区CAP结合位点结合位点启动序列启动序列操纵序列操纵序列 结构基因结构基因Z: -半乳糖苷酶半乳糖苷酶Y: 透酶透酶A:乙酰基转移酶:乙酰基转移酶cAMPCAP复合物ATPATP腺甘酸环化酶腺甘酸环化酶cAMP(环腺甘酸)(环腺甘酸) 大肠杆菌中:无葡萄糖,大肠杆菌中:无葡萄糖,cAMP浓度高;浓度高; 有葡萄糖,有葡萄糖,cAMP浓度低浓度低+ + + + + + + + 转录转录无葡萄糖,无葡萄糖,cAMP浓度高时浓度高时促进转录促进转录有葡萄糖,有葡萄糖,cAMP浓度低时浓度低时不促进转录不促进转录ZYAOPDNACAPCAPCAPCAPCAPCA

22、PCAPCAP的正调控的正调控当阻遏蛋白封闭转录时,CAP对该系统不能发挥作用如无如无CAP存在,即使没有阻遏蛋白与操纵序列结合,存在,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。操纵子仍无转录活性。 cAMPCAP复合物与启动复合物与启动子区的结合是转录起始所必需的。子区的结合是转录起始所必需的。协调调节协调调节葡萄糖对葡萄糖对 lac 操纵子的阻遏作用称操纵子的阻遏作用称分解代分解代谢阻遏谢阻遏(catabolic repression)。 单纯乳糖存在时,细菌利用乳糖作碳源;若单纯乳糖存在时,细菌利用乳糖作碳源;若有葡萄糖或葡萄糖有葡萄糖或葡萄糖/乳糖共同存在时,细菌首先利乳糖共

23、同存在时,细菌首先利用葡萄糖。用葡萄糖。五、五、LacLac操纵子中的其他问题操纵子中的其他问题1、A基因及其生理功能半乳糖甘分子(IPTG)-半乳糖甘酶分解产物(体内积累)-半乳糖甘乙酰基转移酶半乳糖甘分子(IPTG)乙酰基2、lac基因产物数量上的比较-半乳糖苷酶:透过酶:乙酰基转移酶=1:0.5:0.2翻译水平上受到调节:(1)lac mRNA可能与翻译过程中的核糖体相脱离,从而终止蛋白质链的翻译;(2)在 lac mRNA分子内部,A基因比Z基因更容易受内切酶作用发生降解。Contents基因表达调控的基本概念基因表达调控的基本概念原核基因调控机制原核基因调控机制乳糖操纵子乳糖操纵子色

24、氨酸操纵子色氨酸操纵子其他操纵子其他操纵子转录后水平上的调控转录后水平上的调控第四节 色氨酸操纵子(trp operon)内容提要:内容提要: 色氨酸操纵子的结构色氨酸操纵子的结构 色氨酸操纵子的色氨酸操纵子的阻遏系统 色氨酸操纵子的弱化机制一、色氨酸操纵子的结构一、色氨酸操纵子的结构 调控基因调控基因 结构基因结构基因 催化分枝酸转变为色氨酸催化分枝酸转变为色氨酸 的酶的酶trpRtrp 分支酸 邻氨基苯甲酸 磷酸核糖基 CDRP 吲哚甘油-磷酸 色氨酸 邻氨基苯甲酸 邻氨基苯甲酸合成酶 吲哚甘油 色氨酸合成酶 硼酸合成酶 链 链 60,000 60,000 4 5,000 50,000 2

25、9,000 P O l a trpE trpD P trpC trpB trpA t t 1560 1620 1353 1191 804 36P:起动子;O:操纵子; l:前导序列; a:衰减子; t,t :终止子 图 16-15 E.coli trpO 的结构及其产物所催化的色氨酸合成反应 特点: (1) trpR和trpABCDE不连锁; (2) 操纵基因在启动子内 (3) 有衰减子(attenuator)/弱化子 (4) 启动子和结构基因不直接相连,二者被 前导序列(Leader)所隔开 trpR trpP trpO trpE trpD trpC trpB trpA 蛋白 TrpR(无活

26、性) 活化的 阻遏蛋白 阻遏物 (Trp) 图 16-27 TrpR 被 Trp 激活后可阻遏trp 操纵子的转录 (仿 B.Lewin:GENES,1990, Fig .13.16) 二、trp 操纵子的阻遏系统三、trp 操纵子的弱化机制衰减子(attenuator)/弱化子前导序列(leader sequence)1、弱化子: DNA中可导致转录过早终止的一段核甘酸序列(123-150区)。123150 研究引起终止的研究引起终止的mRNAmRNA碱基序列碱基序列,发现该区发现该区mRNAmRNA通过通过自我配对可以形成自我配对可以形成茎茎- -环环结构,有典型的结构,有典型的终止子终止

27、子特点。特点。2、前导序列:在trp mRNA5端trpE基因的起始密码前一个长162bp的mRNA片段。 邻氨基苯 吲哚甘油 色氨酸合成酶 甲酸合成酶 硼酸合成酶 TrpE terpD trpC trpB trpA t t 启动子 操纵基因 前导顺序 衰减子 pppN26AUGAAAGCAAUUUUCGUACUGAAGGUUGGUGGCGCACUUCCUGAN43A UUUUUUUU 富含 G-C 的发 G C Leader peptide 夹结构 / 富含 C G U 的单链末端 C G Aaaaaa C G Met Lys Aly Ile Phe Val Leu Lys Gly Trp

28、Trp Arg Thr Ser A G C C G A C G U U A A 图 16-28 trp 操纵子含有 5 个结构基因和 1 个控制区。控制区由启动子、操纵基因、前导顺序和衰减子构成。前导区编码 14 个氨基酸,其中有 2 个是色氨酸。(仿 B.Lewin:GENES,1997, Fig .12.38) 3、弱化机制、弱化机制前导肽前导肽转录终止结构转录终止结构 细菌通过弱化作用弥补阻遏作用的不足,因为阻遏细菌通过弱化作用弥补阻遏作用的不足,因为阻遏作用只能使作用只能使转录不起始转录不起始,对于已经起始的转录,只,对于已经起始的转录,只能通过弱化作用使之中途停下来。阻遏作用的信号能

29、通过弱化作用使之中途停下来。阻遏作用的信号是是细胞内色氨酸的多少细胞内色氨酸的多少;弱化作用的信号则是;弱化作用的信号则是细胞细胞内载有色氨酸的内载有色氨酸的tRNA的多少的多少。它通过前导肽的翻。它通过前导肽的翻译来控制转录的进行,在细菌细胞内这两种作用相译来控制转录的进行,在细菌细胞内这两种作用相辅相成,体现着生物体内周密的调控作用。辅相成,体现着生物体内周密的调控作用。 什么是操纵子(operon)?试说明色氨酸操纵子(Trp operon)在原核基因表达调控中的调控机制和重要作用。 2003年武汉大学分子生物学试题三、阻遏蛋白LexA的降解与细菌中的SOS应答SOS反应的机理:由 Re

30、cA 蛋白和 LexA 阻遏物的相互作用引起的。LexA阻遏物:是SOS DNA修复系统所有基因的阻遏物RecA蛋白:是SOS反应的最初的发动因子。在单链DNA和ATP存在时,RecA蛋白被激活,表现出水解酶活性,分解LexA阻遏物。当RecA水解LexA阻遏物后,导致SOS体系(包括recA基因)高效表达,DNA得到修复Contents基因表达调控的基本概念基因表达调控的基本概念原核基因调控机制原核基因调控机制乳糖操纵子乳糖操纵子色氨酸操纵子色氨酸操纵子其他操纵子其他操纵子转录后水平上的调控转录后水平上的调控一、翻译起始的调控 RBS(核糖体结合位点):mRNA链上起始密码子AUG上游的一段

31、非翻译区。 RBS的结合强度取决于SD序列的结构及其与起始密码子AUG之间的距离。 SD- 4-10(9)-AUG第六节第六节 转录后水平上的调控转录后水平上的调控二、稀有密码子对翻译的影响dnaG(引物酶) RNA引物dnaG、rpoD和rpsU属于大肠杆菌基因组上的同一个操纵子50个拷贝的dnaG蛋白、2800个拷贝的rpoD和40000个拷贝的rpsU几种蛋白质中异亮氨酸密码子使用频率比较蛋白质AUU/%AUC%AUA%结构蛋白37621亚基26740DnaG蛋白363232细胞内对应于稀有密码子的tRNA较少,高频率使用这些密码子的基因翻译过程容易受阻,影响了蛋白质合成的总量。三、重叠

32、基因对翻译的影响三、重叠基因对翻译的影响TrpB 谷氨酸- 异亮氨酸-终止 GAA - AUC - UGA - UGG - AA AUG - GAA 甲硫氨酸 谷氨酸trpAtrpE苏氨酸苯丙氨酸终止 ACU - UUC - UGA - UGG - CU AUG AUG GCU 甲硫氨酸 - 丙氨酸- trpD 翻译终止时核糖体立即处在起始环境中,这种重叠的密码子保证了同一核糖体对两个连续基因进行翻译的机制。1、关于管家基因叙述错误的是、关于管家基因叙述错误的是 (A) 在生物个体的几乎各生长阶段持续表达在生物个体的几乎各生长阶段持续表达 (B) 在生物个体的几乎所有细胞中持续表达在生物个体的

33、几乎所有细胞中持续表达 (C) 在生物个体全生命过程的几乎所有细胞中在生物个体全生命过程的几乎所有细胞中表达表达 (D) 在生物个体的某一生长阶段持续表达在生物个体的某一生长阶段持续表达 (E) 在一个物种的几乎所有个体中持续表达在一个物种的几乎所有个体中持续表达 D2、一个操纵子(元)通常含有、一个操纵子(元)通常含有 (A) 数个启动序列和一个编码基因数个启动序列和一个编码基因 (B) 一个启动序列和数个编码基因一个启动序列和数个编码基因 (C) 一个启动序列和一个编码基因一个启动序列和一个编码基因 (D) 两个启动序列和数个编码基因两个启动序列和数个编码基因 (E) 数个启动序列和数个编

34、码基因数个启动序列和数个编码基因 B4 4、乳糖操纵子(元)的直接诱导剂是、乳糖操纵子(元)的直接诱导剂是 (A) (A) 葡萄糖葡萄糖 (B) (B) 乳糖乳糖 (C) (C) 一半乳糖苷酶一半乳糖苷酶 (D) (D) 透酶透酶(E)(E)异构乳糖异构乳糖 E5 5、LacLac阻遏蛋白结合乳糖操纵子(元)的阻遏蛋白结合乳糖操纵子(元)的 (A) CAP(A) CAP结合位点结合位点 (B) O(B) O序列序列 (C) P(C) P序列序列 (D) Z(D) Z基因基因 (E) I(E) I基因基因B6 6、cAMPcAMP与与CAPCAP结合、结合、CAPCAP介导正性调节发生在介导正性

35、调节发生在 (A) (A) 葡萄糖及葡萄糖及cAMPcAMP浓度极高时浓度极高时 (B) (B) 没有葡萄糖及没有葡萄糖及cAMPcAMP较低时较低时 (C) (C) 没有葡萄糖及没有葡萄糖及cAMPcAMP较高时较高时 (D) (D) 有葡萄糖及有葡萄糖及cAMPcAMP较低时较低时 (E) (E) 有葡萄糖及有葡萄糖及CAMPCAMP较高时较高时 C7、Lac阻遏蛋白由阻遏蛋白由 (A) Z基因编码基因编码 (B) Y基因编码基因编码 (C) A基因编码基因编码 (D) I基因编码基因编码 (E) 以上都不是以上都不是 D8、色氨酸操纵子(元)调节过程涉及、色氨酸操纵子(元)调节过程涉及

36、(A) 转录水平调节转录水平调节 (B) 转录延长调节转录延长调节 (C) 转录激活调节转录激活调节 (D) 翻译水平调节翻译水平调节 (E) 转录翻译调节转录翻译调节 E (A) Lac阻遏蛋白阻遏蛋白 (B) RNA聚合酶聚合酶 (C) 环一磷酸腺苷环一磷酸腺苷 (D) CAP-cAMP (E)异构异构乳糖乳糖 9、与、与O序列结合序列结合 10、与、与P序列结合序列结合 11、 与与CAP结合结合 12、与、与CAP位点结合位点结合 ABCD15、以下关于cAMP对原核基因转录的调控作用的叙述错误的是AcAMP可与分解代谢基因活化蛋白(CAP)结合成复合物BcAMP-CAP复合物结合在启

37、动子前方C葡萄糖充足时,cAMP水平不高D葡萄糖和乳糖并存时,细菌优先利用乳糖E葡萄糖和乳糖并存时,细菌优先利用葡萄糖D21、 Lac 阻遏蛋白由阻遏蛋白由 _ 基因编码,基因编码,结合结合 _ 序列对序列对 Lac 操纵子(元)起操纵子(元)起阻遏作用。阻遏作用。 22、 Trp 操纵子的精细调节包括操纵子的精细调节包括 _ 及及 _ 两种机制。两种机制。 IO阻遏机制阻遏机制弱化机制弱化机制The Lac Operon:When Glucose Is Present But Not LactoseRepressorPromoterLacYLacALacZOperatorCAPBindingRNAPol.RepressorRepressorRepressor mRNAHey man, Im constituti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论