(江苏)高考数学-压轴大题突破练-圆锥曲线(共7页)_第1页
(江苏)高考数学-压轴大题突破练-圆锥曲线(共7页)_第2页
(江苏)高考数学-压轴大题突破练-圆锥曲线(共7页)_第3页
(江苏)高考数学-压轴大题突破练-圆锥曲线(共7页)_第4页
(江苏)高考数学-压轴大题突破练-圆锥曲线(共7页)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上中档大题规范练圆锥曲线1已知中心在原点的双曲线C的右焦点为(2,0),实半轴长为.(1)求双曲线C的方程;(2)若直线l:ykx与双曲线C的左支交于A,B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,b),求b的取值范围解(1)设双曲线方程为1 (a>0,b>0),由已知,得a,c2,b2c2a21,故双曲线方程为y21.(2)设A(xA,yA),B(xB,yB),将ykx代入y21,得(13k2)x26kx90.由题意,知解得<k<1.所以当<k<1时,直线l与双曲线C的左支有两个交点(3

2、)由(2),得xAxB,所以yAyB(kxA)(kxB)k(xAxB)2,所以AB中点P的坐标为.设l0的方程为yxb,将P点的坐标代入l0的方程,得b,<k<1,2<13k2<0,b<2.b的取值范围是(,2)2已知离心率为的椭圆C1的左,右焦点分别为F1,F2,抛物线C2:y24mx(m>0)的焦点为F2,设椭圆C1与抛物线C2的一个交点为P(x0,y0),PF1.(1)求椭圆C1的标准方程及抛物线C2的标准方程;(2)直线xm与椭圆C1在第一象限的交点为Q,若存在过点A(4,0)的直线l与椭圆C1相交于不同的两点M,N,使得36AQ235AM·

3、;AN,求出直线l的方程解(1)在椭圆C1中cm,e,a2m,b23m2,设椭圆C1的方程为1,联立1与y24mx,得3x216mx12m20,即(x6m)·(3x2m)0,得x或6m(舍去),代入y24mx得y±,设点P的坐标为(,),PF2m,PF12a,m1,此时,椭圆C1的标准方程为1,抛物线C2的标准方程为y24x.(2)由题设知直线l的斜率存在,设直线l的方程为yk(x4),由消去y整理,得(34k2)x232k2x64k2120.由题意知(32k2)24(34k2)(64k212)>0,解得<k<.设M(x1,y1),N(x2,y2),则x1

4、x2,x1x2.由(1)知m1,解得点Q的坐标是(1,)AQ2,由已知条件可知AM·AN×.又AM·AN··(k21)·(4x1)·(4x2)(k21)x1x24(x1x2)16(k21)(4×16)(k21)·.(k21)·,解得k±,经检验成立直线l的方程为x2y40或x2y40.3(2013·课标全国)平面直角坐标系xOy中,过椭圆M:1(a>b>0)右焦点的直线xy0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上的两

5、点,若四边形ACBD的对角线CDAB,求四边形ACBD面积的最大值解(1)设A(x1,y1),B(x2,y2),则1,1,得0.因为1,设P(x0,y0),因为P为AB的中点,且OP的斜率为,所以y0x0,即y1y2(x1x2)所以可以解得a22b2,即a22(a2c2),即a22c2,又因为右焦点(c,0)在直线xy0上,解得c,所以a26,所以M的方程为1.(2)因为CDAB,直线AB方程为xy0,所以设直线CD方程为yxm,将xy0代入1得:3x24x0,即A(0,),B,所以可得AB;将yxm代入1得:3x24mx2m260,设C(x3,y3),D(x4,y4),则CD,又因为16m2

6、12(2m26)>0,即3<m<3,所以当m0时,CD取得最大值4,所以四边形ACBD面积的最大值为AB·CD.4已知椭圆C:1(a>b>0),O:x2y2b2,点A,F分别是椭圆C的左顶点和左焦点,点P是O上的动点(1)若P(1,),PA是O的切线,求椭圆C的方程;(2)是否存在这样的椭圆C,使得恒为常数?如果存在,求出这个常数及C的离心率e;如果不存在,请说明理由解(1)由P(1,)在O:x2y2b2上,得b2134.直线PA的斜率kPA,而直线PA的斜率kPA,所以,解得a4.所以a216,所以椭圆C的方程为1.(2)假设存在椭圆C,使得恒为常数设

7、椭圆C的半焦距为c,当P(b,0)时,则有;当P(b,0)时,则有.依假设有.当cb>0时,有,所以(ab)(bc)(ab)(cb),化简整理得ac,这是不可能的当cb<0时,有.所以(ab)(bc)(ab)(bc),化简整理得acb20.所以c2a2ac0,两边同除以a2,得e2e10.解得e,或e(0,1)(舍去)可见,若存在椭圆C满足题意,只可能离心率e.设P(x,y)为O:x2y2b2上任意一点,则.(*)由上c2a2ac0,得a2c2ac,所以···c1,从而.代入(*)式得,所以存在满足题意的椭圆C,这个常数为 ,椭圆C的离心率为e.5已知

8、平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·的最小值解(1)设动点P的坐标为(x,y),由题意有|x|1.化简得y22x2|x|.当x0时,y24x;当x<0时,y0.所以,动点P的轨迹C的方程为y24x (x0)和y0 (x<0)(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为yk(x1)由得k2x2(2k24)xk20.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个

9、实根,于是x1x22,x1x21.因为l1l2,所以l2的斜率为.设D(x3,y3),E(x4,y4),则同理可得x3x424k2,x3x41.故·()·()····|·|·|(x11)(x21)(x31)(x41)x1x2(x1x2)1x3x4(x3x4)1111(24k2)18484×216.当且仅当k2,即k±1时,·取最小值16.6在平面直角坐标系xOy中,动点P在椭圆C1:y21上,且到椭圆C1的右焦点的距离与到直线x2的距离之比等于椭圆的离心率动点Q是动圆C2:x2y2r2

10、(1<r<2)上一点(1)设椭圆C1上的三点A(x1,y1),B(1,),C(x2,y2)与点F(1,0)的距离依次成等差数列,线段AC的垂直平分线是否经过一个定点?请说明理由;(2)若直线PQ与椭圆C1和动圆C2均只有一个公共点,求P,Q两点的距离PQ的最大值解(1)椭圆C1:y21的离心率e,右焦点为(1,0),由题意可得AF(2x1),BF(21),CF(2x2)因为2BFAFCF,所以(2x1)(2x2)2×(21),即得x1x22.因为A,C在椭圆上,故有y1,y1,两式相减,得kAC.设线段AC的中点为(m,n),而m1,n,所以与直线AC垂直的直线斜率为ky2y12n.则线段AC的垂直平分线的方程为yn2n(x1),即yn(2x1)经过定点(,0)即线段AC的垂直平分线过一个定点(,0)(2)依题意得,直线PQ的斜率显然存在,设直线PQ的方程为ykxt,设P(x1,y1),Q(x2,y2),由于直线PQ与椭圆C1相切,点P为切点,从而有得(2k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论