版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十章 二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。二、教学重难点:重点: 二元一次方程的认识。难点:探求二元一次方程的解。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知情境一 根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少 场?输了多少场?情境二 某球员在一场篮球比
2、赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三 小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:( ) 2、你能列出所有输赢的所有可能情况吗? x 5 y3、如果设投中了( )个两分球,( )个三分球,根据题意可列方程:( ) 4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了( )个三分球(2)这名球员最多投中了( )
3、个球(3)如果这名球员投中了10个球,那么他投中了( )个三分球,( )个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场, 2x+y=20(2)设赢了x场,输了y场, 2x+3y=35-10(3)设答对x题,答错y题, x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。2 / 26练习 1、请同学们编一道二元一次方程和一道不是二元一次的方程
4、。2、判断下列方程哪些是二元一次方程,哪些不是?(1)x+3y=3z (2)2xy+y =7 (3)x+y+1 (4)2(x+y)=1-x3、把下列方程写成用含x的代数式表示y的形式:(1)5x+y=15 (2)3x-4y=12下面,我们一起来讨论一下二元一次方程的解的情况。首先我们来复习一下什么是一元一次方程的解?思考:什么是二元一次方程的解?得出结论:适合二元一次方程的一对未知数的值称为这个二元一次方程的一个解。记作:(1)强调:“一对”如x=8,y=3 就是方程2x3y=25的一个解,记作: x=8 ,y=3(2)写出一个二元一次方程,使x=-1 ,y=3为它的一个解,该二元一次方程可以
5、为_ 二元一次方程x-y=5的解有多少个?x011.5234521y指出:一般地,二元一次方程的解有无数个设问:是否x、y任意取两个数都是这个方程的解?试举例。(三)拓展延伸,运用新知1、已知方程 3x+2y=12(1)它有多少个解?(2)它有多少个正整数解?2、七年级(1)班为了奖励优秀学生,花60元购买了钢笔和笔记本作为奖品。每支钢笔5元,每本笔记本3元。如果设买钢笔x支,笔记本y本。(1)你能列出关于x、y的方程吗?(2)请你用列表格的方式,列出所买钢笔支数、笔记本本数所有的可能情况。(3)你能根据所列方程再编一个类似的问题吗?3、在 x=-2 x=2 x= 12 三对数值中, y=2
6、y=-1 y=2(1)哪几对是方程2x+y=3的解?(2)哪几对是方程x-2y=4的解?(3)有没有这样的一对值,它既是方程2x+y=3的解,又是方程x-2y=4的解?(四)课堂小结,优化新知这节课通过对实际问题的分析,使学生进一步体会到了方程是刻画现实世界的有效模型在此基础上,我们了解了二元一次方程及其解等概念,并学会了判断一组数是不是某个二元一次方程的解(五)布置作业P108习题10.1 2、310.2 二元一次方程组(第一课时)一、教学目标:1、会分析题意,找出等量关系,经历列二元一次方程组解决实际问题的过程,进一步体会方程组是解决这类问题的有效数学模型。2、了解二元一次方程组的概念。3
7、、进一步培养学生分析问题和解决问题的能力。二、教学重难点:重点:了解二元一次方程组的概念,能根据条件列方程组。难点:体会方程组是解决问题的有效数学模型。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知情境一 今有鸡、兔同笼,上有35头,下有94足,问鸡兔各几何?情境二 某班学生39人,到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满。问:大船、小船各租了多少艘?(二)探索活动,揭示新知情境一分析:“上有35头”,指鸡、兔共35只,即“鸡的只数+兔的只数=35(只),”“下有94足”,指鸡的腿与兔的腿共有94条,即“鸡腿的条数+兔腿的
8、条数=94(条)”若设鸡有x只,兔有y只,则 x+y=352x+4y=94情境二分析:设大船租了x艘,小船租了y艘,根据题意得 x+y=95x+3y=39像上述这样,含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。方程组中两个方程都是一次方程(即“一次”),同时方程组中只有两个(两种)未知数(即“二元”)要从这个层面上理解二元一次方程组的定义,如 x=ay=b (a、b为常数) 就是二元一次方程组。练习 1、写出几个二元一次方程组。2、判断下列各方程组是不是二元一次方程组? 3、P120 练一练(学生、教师共同加以评论。)注意:列二元一次方程组关键找出两个相等关系。(三)例题分析
9、,领悟新知例1 在学雷锋活动中,我班40人为贫困生捐款,共捐款100元,捐款情况如下表: 捐款/元 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x人,捐款3元的有y人。根据题意你能列出怎样的方程组。分析:题目中的等量关系:捐款1元,2元,3元,4元的人数之和等于总人数40,钱数之和为100元。例2 为奖励在读书知识竞赛中的获奖同学,赵欣代表班委会去购买两种笔记本作为奖品,已知甲种笔记本为5元/本,乙种笔记本为3元/本,共购买了10本,花去了34元,如果设甲种笔记本购买了x本,乙种笔记本购买了y本,请根据题意,列出两种笔记本各买了几本的方程组。
10、分析:本题中两种笔记本的单价,购买的总数,所花的总费用是已知的,可找出“购买甲种笔记本的数量+购买乙种笔记本的数量=10(本)”“购买甲种笔记本的费用+购买乙种笔记本的费用=34(元)”,由这两个等量关系式,即可列出方程组。强调:列方程组解应用题,审题是前提,找出等量关系是关键,审题必须弄清各个量表示的含义,单位及量之间的数量关系,找出等量关系,再把已知量、未知量代入关系式,“翻译”成方程(组)。(四)拓展延伸,运用新知1、方程组 x-y=4 2x-y=5 y=3x x-5=3y xy=3 y=4x+1 x+4z=8 -= x-5=3y +y=1中二元一次方程组的个数是 ( )A、1 B、2
11、C、3 D、42、若2x2m-1y2与-x3yn+4的和为x3y2,则m = ,n = 。3、猴山上共有大、小猴2000只,小猴的数量是大猴的4倍,设小猴有x只,大猴有y只,可列出关于x,y方程组为 。4、有参观爱国主义教育基地的参观券若干张,分给若干名同学,若每人4张则多14张,每人5张则少26张,问有多少张参观券,多少名同学,若设有x张参观券,有y名同学,根据题意可列方程组为 。(五)课堂小结,优化新知1、从实际问题到方程组,一般要经历哪些过程?(从实际问题到数学问题,再从数学问题到列出方程组,正确列出方程组的关键在于弄清题意,恰当地设未知数,找出问题中的两个相等关系。)2、你能写出一些二
12、元一次方程组吗?(六)布置作业P112习题10.2 110.2 二元一次方程组(第二课时)一、教学目标:1、了解二元一次方程组的解的概念;2、能检验一对数是不是二元一次方程组的解;3、初步学会根据给定的解求出方程组中所含字母的值。二、教学重难点:重点:二元一次方程组的解的概念。难点:1、根据给定的解而解决问题的能力;2、公共解的意义。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知箱子里有许多的红球和蓝球,现摸到1个红球,3个绿球,共得11分,你知道摸到1个红球得多少分?1个绿球得多少分?再摸一次,又摸到了3个红球,2个绿球,共得12分。你知道摸到1个红球、
13、1个绿球各得多少分?(学生在自己的本子上写出方程组。再议一议。)(二)探索活动,揭示新知分析:问题中的量应同时满足以上两个相等关系,因而将这两个方程组成二元一次方程组: x+3y=11 (1) 3x+2y=12(2)根据上面的方程组,请你猜一猜,“摸到红、绿球得分”问题的答案。你用了什么方法?方程(1)的解是:x=2 x=5, x=8 y=3 y=2; y=1方程(2)的解是:x=0 x=2 x=4 y=6 y=3 y=0可以看出 x=2, y=3 是这两个方程的一个公共解。我们把二元一次方程组中两个方程的公共解,叫做二无一次方程组的解。上例中,方程组 x+3y=11, x=2, 3x+2y=
14、12 的解是: y=3因此,我们知道,摸到1个红球得2分,摸到1个绿球得3分。做一做 你能求出“鸡兔同笼”问题中二元一次方程组x+y=352x+4y=94的解吗?练习 1、方程组 5x-2y=42x+y=7 的解是( ) A x=-2, Bx=2, C x=-2 Dx=3y=3 y=3 y=7 y=-32如果 x=2,是方程组 x+y=m,的解 y=-3 2x-y=n 则m= ,n= .(四)拓展延伸,运用新知甲种饮料每瓶2.5元,乙种饮料每瓶1.5元,某人买了x 瓶甲种饮料,y瓶乙种饮料,共花了34元。(1)列出关于x、y的二元一次方程;(2)如果甲种饮料和乙种饮料共买16瓶,列出关于x、y
15、的二元一次方程组,并找出它的解。(五)课堂小结,优化新知1、二元一次方程组的解一定是组成这个方程组的两个方程的公共解吗?2、写出解是 x=1,的二元一次方程组?y=1你能写出几个?(六)布置作业 P112习题10.2 3、410.3 解二元一次方程组(第一课时)一、教学目标:1、能熟练地用代入消元法解简单的二元一次方程组。2、从解方程的过程中体会转化的思想方法。二、教学重难点:重点:用代入消元法解二元一次方程组。难点:用含有一个未知数的代数式表示另一个未知数。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知根据篮球比赛规则;赢一场得2分,平一场得1分,在某次
16、中学篮球联赛中,某球队赛了12场,赢了x场,输了y场,共各20分。可以得出方程组: x+y=12 2x+y=20如何解上面的二元一次方程组?(二)探索活动,揭示新知如何解出x,y?设想能把二元化为一元,由学生自己讨论。(学生主动探索,尝试,体会消元的方法)解:由得:y=12-x 将 代入得: 2x+12x-x=20解这个二元一次方程,得:x=8将x=8代入,得y=4所以原方程组的解是 x=8y=4注意:(1)二元一次方程组的解是一对数值,而不是一个单纯的x值或y值。(2)算出结果后要做心算检验,以养成习惯。问题:(引导思维拓展)(1)你是如何解方程组的?(2)每一步的依据是什么?(3)还有其它
17、的方法吗?(能否通过消去x解方程?)将方程组的一个方程中的某个未知数据用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程转化为解一元一次方程,这种解方程组的方法,称为代入消元法,简称代入法。(学生归纳、总结、并理解)点评:用代入消元法解二元一次方程组方法不唯一,比如:上题中也可以用y来表示x,通过消去x 来解方程。即:由得:x=12-y,将代入得即使用x来表示y,方法也不是唯一的,可以由得y=12-x,也可以由得y=20-2x(三)例题分析,领悟新知例 解方程组 x+3y=0 3x+2y=92(板书示范,学生思考回答)步骤:(1)用一个未知数表示另
18、一个未知数;(2)将表示后的未知数代入方程;(3)解此方程;(4)求方程组的一对解。练习 P110练一练 1、2、3(学生板演)(四)拓展延伸,运用新知1、解方程组 3x=1-2y3x+4y=-7(整体代入法)2、已知 x+y=k 2x+3y=k(五)课堂小结,优化新知1、用代入法解二元一次方程组的步骤?2、任意一个二元一次方程都能用代入消元法解吗?举例说明。(六)布置作业P116习题10.3 1、(1)(4) 2、310.3 解二元一次方程组(第二课时)一、教学目标:1、会用加减消元法解二元一次方程组。2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。3、了解解二元一次
19、方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。二、教学重难点:重点:加减消元法的理解与掌握。难点:加减消元法的灵活运用。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?设苹果汁、橙汁单价为x元,y元。我们可以列出方程 3x+2y=23 5x+2y=33问:如何解这个方程组?(二)探索活动,揭示新知1、学生再观察,议一议:(1)消去哪个未知数,(2)怎样消去?2、除了用代入消元法解以外,
20、还有其他方法求解吗?3、这些方法与代入消元法有何异同?4、这个方程组有何特点?解法一: 3x+2y=23 5x+2y=33 由式得把式代入式33解这个方程得:y=4把y=4代入式则 所以原方程组的解是 x=5y=4解法二: 3x+2y=23 5x+2y=33由式:3x+2y-(5x+2y)=23-333x-5x=-10解这个方程得: x=5把x=5代入式,3×5+2y=23解这个方程得: y=4 所以原方程组的解是 : x=5y=4 把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法
21、。(三)例题分析,领悟新知例1 解方程组: x+2y=1 3x-2y=5 练习 P116练一练 1(1)例2 解方程组: 5x-2y=4 2x-3y=-5 练习 P116练一练 1(2)(3)(4) 2小结:(1)加减消元法关键是如何消元,化二元为一元。(2)先观察后确定消元。(四)拓展延伸,运用新知1、解方程组: 2、运用“转化”的思想方法,你能解下面的三元一次方程组吗?(1)(2)(五)课堂小结,优化新知1、掌握加减消元法解二元一次方程组。2、灵活选用代入消元法和加减消元法解二元一次方程组。(六)布置作业P116习题10.3 1、 210.4 用方程组解决问题(第一课时)一、教学目标:1、
22、使学生读完题后会说题。找出等量关系。2、鼓励学生主动探索。有了答案后,引导学生合作交流,择优。二、教学重难点:重点:理解题意,找出数量关系。难点:能找出题目中两个等量关系。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知问题一 国庆长假期间,某旅行社接待一日游和三日游的游客共2200人,收旅行费200万元,其中一日游每人收费200元,三日游每人收费1500元。该旅行社接待的一日游和三日游旅客个多少人?提出问题:(1)有几个未知数?几个已知量?(2)已知量和未知量之间的数量关系你能找到吗?(3)相等的关系是否明显?你找找。(二)探索活动,揭示新知你能告诉我等量
23、关系或方程吗?(1)人数等量关系(2)钱数相等关系解:设接待一日游旅客x人,三日游旅客y人 那么一日游共收费200x元,三日游共收费1500y元。 由题意得解这个方程组得答:该旅行社接待一日游旅客1000人,三日游旅客1200人。想一想 还有其他的方法吗?问题二 为了保护环境,某学校环保小组成员收集废旧电池,第一天收集5节1号电池,6节5号电池,总质量为500g;第二天收集3节一号电池,4节5号电池,总质量为310g。一节一号电池和一节五号电池的质量分别是多少?(鼓励学生读题,只探,交流,找出等量关系。鼓励学生尝试归纳、概括用二元一次方程组解决实际问题的关键、步骤。)小结列方程组解决简单的实际
24、问题的步骤:(1)理解题意,找出表示实际问题意义的两个等量关系;(2)在求解的过程中,设两个未知数,再根据相等关系列出方程组;(3)解这个方程组;(4)检验并写出答案。读一读 P118 “废旧电池的危害”(三)例题分析,领悟新知例 小明买了80分与2分的邮票11枚,花了16元。80分与2分的邮票各买了多少枚?练一练 P119 1、 2.(四)拓展延伸,运用新知1、用一根绳子环绕一棵大树.如果环绕3周,绳子还多四尺,如果环绕4周,绳子还少了3尺。问绳子有多长?绳子环绕大树一周需要多少尺?2、一长方形周长为24,现把长、宽都增加3,周长变为36。求原来长方形的面积。(五)课堂小结,优化新知1、谈谈
25、列方程组解决简单的实际问题的步骤。2、用二元一次方程组解决实际问题的关键是什么?(六)布置作业P124习题10.4 1、210.4 用方程组解决问题(第二课时)一、教学目标:1、借助“表格”分析复杂问题中的数量关系,从而建立方程解决实际问题。2、提高学生分析能力,解决问题能力,使学生感受方程的作用。二、教学重难点:重点:理解题意,找出数量关系。难点:能找出题目中两个等量关系。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知问题三 某厂生产甲、乙两种型号的产品,生产一个甲种产品需要时间8s、铜8g;生产一种乙种产品的型号需要时间6s、铜16g.如果生产甲、乙两
26、种产品共用1h,用铜6.4kg,甲、乙两种产品个生产多少个?提出问题:(1)已知数是什么?未知数是什么?(2)能找到几个等量关系?(3)单位是否一致?(二)探索活动,揭示新知你能告诉我等量关系或方程吗?分析:甲种产品x个乙种产品y个总计用时/s用彤/g问题:从表格中能找到等量关系吗?(学生自探,再组织学生议一议,在四人小组中发表自己的意见。)解:设生产甲种产品x个,乙种产品y个 由题意得: 解这个方程得 答:生产甲种产品240个,乙种产品280个。问题四 为了加强公民的节水意识,合理利用水资源。某市采用价格调控手段达到节约水的目的。规定:每户居民每月用水不超过6时,按基本价格收费,该市某户居民
27、今年4、5月份的用水量和水费如下表所示,试求用水收费的两种价格。月份用水量/水费/元48215927分析:由表格看到什么信息?(4月份用水超过6,所以水费有两部分组成21元。 5月份用水超过6,所以水费有两部分组成27元。)提问:(1)表格该如何设计?(2)如何用表格来分析问题中的数量关系?(三)例题分析,领悟新知例1 甲,乙两个村共有农田1000亩,其中68%是水田。已知甲村的农田中80%是水田,乙村的农田60%是水田。甲、乙两村各有多少亩农田?例2 甲,乙两个仓库共存粮500t,现从甲仓库运出存粮50%,从乙仓库运出存粮40%,结果乙仓库的粮食比甲仓库所余的粮食多30t。甲、乙两仓库原来存
28、粮各是多少?(引导学生设未知数和列表格分析数量关系,最后完成以上两题)做一做 P120 1、2想一想 你还有什么想法?练一练 P121 1、2(四)拓展延伸,运用新知1、班级买票看电影,票分为甲乙两种,甲种票买了5张,乙种票买了35张,花费125元。现在班里每个人都去看电影,问甲乙票价各是多少?2、有两个矩形,第一个矩形的长、宽比第二个矩形的长、宽都长1,第一个矩形的长比宽与第二个矩形的长比宽都长1,第一个矩形的周长比第二个矩形的周长大4,求这两个矩形的面积。(五)课堂小结,优化新知1、用表格分析实际问题的一般步骤是什么?2、解决实际问题,关键是理解题意,找出相等关系,建立方程。(六)布置作业
29、P124习题10.4 2、410.4 用方程组解决问题(第三课时)一、教学目标:1、借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题。2、提高学生分析能力,解决问题能力,使学生感受方程的作用。二、教学重难点:重点:理解题意,找出数量关系。难点:能找出题目中两个等量关系。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)创设情境,感悟新知问题五 用正方形和长方形的两种硬纸片制作甲、乙两种无盖的长方体纸盒(如图)。如果长方形的宽与正方形的边长相等,150张正方形硬纸片和300张长方形硬纸片可以制作甲、乙两种纸盒各多少个? 硬纸片 甲种纸盒 乙种纸盒 提出问题:(1)
30、每个甲种纸盒要正方形硬纸片几张?(2)每个乙种纸盒要正方形硬纸片几张?(3)每个甲种纸盒要长方形硬纸片几张?(4)每个乙种纸盒要正方形硬纸片几张?(二)探索活动,揭示新知提问:能从图中获得哪些信息?解:设可制作甲种纸盒x个,乙种纸盒y个 由题意得:解这个方程得答:可制作甲种纸盒30个,乙种纸盒60个.问题六 某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度。提问:(1)能在示意图上分析这个问题吗?(2)你能根据示意图中的线段的和或差写出两个表达问题的等量关系吗?并根据等量关系列出方程组吗?分析:如果
31、设火车的速度为xmin/s,设火车的长为ym数量关系:路程=时间速度。等量关系:路程的等量关系。组织学生讨论:火车头实际走了多长?(三)例题分析,领悟新知例 小红和爷爷在400米环形跑道上跑步。他们从某处同时出发,如果相向而行,那么经过200s小红追上爷爷;如果背向而行,那么经过40s两人相遇,求他们的跑步速度。引导学生用示意图表示数量,鼓励学生自主探索,并根据线段的和或差找出等量关系,列出方程。小结:解决实际问题时,一定要把握数量关系,抓住等量关系,解决问题。(四)拓展延伸,运用新知1、某人爬山,沿着相同路径,上山下山。先以5km/h走平路,再以3km/h爬坡,用了6h;返回,以4km/h下
32、山,再以2km/h走平路,用了8小时。问平路和山路多长?2、一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数。(五)课堂小结,优化新知议一议:用示意图和用表格分析实际问题的优劣?(六)布置作业P124习题10.4 3、5第十章小结与思考(一课时)一、教学目的:1、通过这一章的学习,经历“问题情境-建立模型-求解-解释与应用”的基本过程,使学生掌握二元一次方程组的解法。2、学会解决实际问题,分析问题能力有所提高. 通过获得成功的体验,增强学生应用数学的信心。二、教学重难点:重点:这一章的知识点,数学方法思想。难点:实际应用问题中的等量关系。三、教学方法:引导探索法,讲练结合,探索交流。四、教学过程:(一)引导学生归纳整理全章的知识结构四人一小组,互相交流学习这一章的感觉,主要学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61850-6:2009/AMD2:2024 EN-FR Amendment 2 - Communication networks and systems for power utility automation - Part 6: Configuration description language for communication
- 人力资源部门人力资源管理全年总结汇报
- 医药行业市场营销经验分享
- 咨询公司前台工作心得
- 二手车行业业务员工作总结
- 环保治理销售人员工作总结
- 人力资源行业的美工工作总结
- 动画设计师的创意故事与视觉动效
- 鼓励学生创新思维的社会科学课程教学总结
- 泰山崖文化校本课程设计
- 《民用爆炸物品企业安全生产标准化实施细则》解读
- MIL-STD-1916抽样计划表(抽样数)大
- 当代民航精神与文化智慧树知到期末考试答案章节答案2024年中国民用航空飞行学院
- 第一单元 春之声-《渴望春天》教学设计 2023-2024学年人教版初中音乐七年级下册
- 养老护理员培训课件
- 包装-存储-运输管理制度
- 装修增项补充合同协议书
- 模拟电路设计智慧树知到期末考试答案章节答案2024年广东工业大学
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 2022-2023学年广东省广州市番禺区教科版(广州)六年级上册期末测试英语试卷【含答案】
- 中国传统文化专题选讲智慧树知到期末考试答案2024年
评论
0/150
提交评论