版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、情境引入学习目标1.了解直角三角形的判定条件(重点)2.能够运用勾股数解决简单实际问题 (难点)导入新课导入新课 问题:同学们你们知道古埃及人用什么方法得到直角? 用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第9个结,拉紧绳子就得到一个直角三角形, 其直角在第1个结处.讲授新课讲授新课勾股定理的逆定理一 问题1:下面有三组数分别是一个三角形的三边长a,b,c: 5,12,13; 7,24,25; 8,15,17.回答下列问题:1.这三组数都满足 a2+b2=c2吗?2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是
2、直角三角形吗?01801501209060300180150120906030实验结果: 5,12,13满足a2+b2=c2,可以构成直角三角形; 7,24,25满足a2+b2=c2,可以构成直角三角形; 8,15,17满足a2+b2=c2 ,可以构成直角三角形.724255131217815问题2:从上述问题中,能发现什么结论吗? 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 有同学认为测量结果可能有误差,不同意 这个发现.你觉得这个发现正确吗?你能给 出一个更有说服力的理由吗?在abc中,三边长分别为a,b,c,且a2+b2=c2.你能否判断 abc是直角
3、三角形?并说明理由.下面我们一起来论证一下:acacbb简要说明:作一个直角mc1n,在c1m上截取c1b1=a=cb,在c1n上截取c1a1=b=ca,连接a1b1.在rta1c1b1中,由勾股定理,得a1b12=a2+b2=ab2 . a1b1=ab , abc a1b1c1 . (sss) c=c1=90, abc是直角三角形.acbacbbac1mnb1a1典例精析例1:一个零件的形状如图1所示,按规定这个零件中a和dbc都应为直角,工人师傅量得这个零件各边的尺寸如图2所示,这个零件符合要求吗?dabc4351312dabc图1图2在bcd中, 所以bcd 是直角三角形,dbc是直角.
4、因此,这个零件符合要求.解:在abd中, 所以abd 是直角三角形,a是直角.如果三角形的三边长a,b,c满足a2+b2=c 那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习典例精析例2:下列各组数是勾股数的是( ) a.6,8,10 b.7,8,9 c.0.3,0.4,0.5 d.52,122,132a 方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.当堂练习当堂练习1.如果线段a,b,c能组成直角三角形,则它们的比可以是 ( ) a.3:4:7 b.5:12:13 c.1:2:4 d.1:
5、3:52. 将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( )a.是直角三角形 b.可能是锐角三角形c.可能是钝角三角形 d.不可能是直角三角形ba4.如果三条线段a,b,c满足a2=c2-b2,这三条线段组成的三角形是直角三角形吗?为什么?解:是直角三角形.因为a2+b2=c2满足勾股定理的逆定理.3.以abc的三条边为边长向外作正方形, 依次得到的面积是25, 144 , 169, 则这个三角形是_三角形.直角5.如图,在正方形abcd中,ab=4,ae=2,df=1, 图中有几个直角三角形,你是如何判断的? 与你的同伴交流.412243解:abe,def,fcb均为直角三角形. 由勾股定理知 be2=22+42=20,ef2=22+12=5, bf2=32+42=25, be2+ef2=bf2, bef是直角三角形.一定是直角三角形吗勾股定理的逆定理:如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计专业实习日记集合7篇
- 书本《背影》读后感
- DB12T 444.1-2011 公共场所集中空调通风系统清洗消毒操作规程 第1部分:清洗
- 人生大事观后感范文
- 个人打印收入证明(6篇)
- 高等数学教程 上册 第4版 测试题及答案 -测试一-答案
- 黔西南州高二下学期语文期末考试试卷
- 九年级上学期语文期中测试模拟试卷(三)(1-4单元)
- 二年级数学计算题专项练习集锦
- 继承工龄用工协议书(2篇)
- 中南大学RFID实验报告讲解
- 国开(电大)《岩土力学》形考任务1-12参考答案
- 监护仪常规操作流程
- 物业公司消防维保质量检查内容及考核评分表
- 电动自行车火灾的勘查检验技术及案例分析
- 螺栓检测报告
- 腐蚀测量及技术
- 家庭医生签约服务在实施老年高血压患者社区护理管理中应用
- 氯化钠与氯化铵分离解析
- 关注青少年心理健康孩子的人格培养与家庭教育
- 个案面谈技巧(2016.6.15)
评论
0/150
提交评论