版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数压轴题1.如图:抛物线经过 A (3 , 0)、B (0, 4)、C (4, 0)三点(1)求抛物线的解析式.(2)已知 AD = AB ( D在线段 AC上),有一动点 P从 A沿线段 AC以每秒 1个单位长度 点的速度移动;同时另一个动点 Q以某一速度从点 B 沿线 BC 移动,经过 t 秒的移动,线段 段 PQ被 BD垂直平分,求 t 的值;(3) 在(2)的情况下, 抛物线的对称轴上是否存在一点 请求出点M的坐标;若不存在,请说明理由。2如图 9,在平面直角坐标系中,二次函数 y 亦 2+bx+ C0)的图象的顶点为 D点,与 y轴 点,与 x 轴交于、两点,点在原点的左侧,点
2、的坐标为(,),交于 CA BAB3 0OB = OC , tan ZACO三 3(1)求这个二次函数的表达式.(2)经过 C、D两点的直线,与 x轴交于点 E,在该抛物线上是否存在这样的点 F,使以点 A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)如图 10,若点 G ( 2, y)是该抛物线上一点,点 P是直线 AG下方的抛物线上一动点, 当点 P运动到什么位置时, APG的面积最大?求出此时 P点的坐标和 APG的最大面积M,使 MQ+MC的值最小?若存在,3如图,已知抛物线与 x 轴交于 A(1,0)、B( 3,0)两点,与 y 轴 交
3、于点 C (0,3)o求抛物线的解析式;设抛物线的顶点为 D,在其对称轴的右侧的抛物线上是否存在点 P,使得PDC 是等腰三角形?若存在,求出符合条件的点 P的坐标;若不存在, 请说明理由;若点 M是抛物线上一点,以 B、C、D、M为顶点的四边形是直角梯形,试求出点 M的坐标。4已知:抛物线 y=ax2+bx+c与 x轴交于 A、B两点,与 y轴交于点 C,其中点 B 在 x 轴的正半C yOB OCOB OCx2x轴上,点 在 轴的正半轴上,线段 、 的长(v )是方程 一10 +16=0的两个根, 且抛物线的对称轴是直线 x=2(1)求 A、B、C三点的坐标;(2)求此抛物线的表达式;(3
4、)求 ABC的面积;(4)若点 E 是线段 AB上的一个动点(与点 A、点 B不重合),过点 E 作 EF/7AC 交 BC于点 F,连接 CE,设 AE的长为 m,CEF的面积为 S,求 S与 m之间的函数关系式,并写出自变量 m 的取值范围;(5)在(4)的基础上试说明 S是否存在最大值,若存在,请求出 S的最大值,并求出此时点 E 的坐标,判断此时 ABCE的形状;若不存在,请说明理由.5 已知抛物线 ya是_2ax+b与吠轴的一个交点为 A(-1,O),与 y 轴的正半轴交于点 C直接写出抛物线的对称轴,及抛物线与 x轴的另一个交点 B 的坐标;当点 C在以 AB为直径的 OP 时,求
5、抛物线的解析式;坐标平面内是否存在点M,使得以点M和中抛物线上的三点A、 B、 C为顶点的四边形是平 行四边形?若存在,请求出点 M的坐标;若不存在,请说明理由.6、如图,已知抛物线 y =-x? +bx+c与 X轴负半轴交于点 A,与 y轴正半轴交于点 B,且 OA=OB.(1 )求+ c 的值;(2)若点 C在抛物线上,且四边形 OABC 是平行四边形,求抛物线的解析式;(3)在(2)条件下,点 P (不与 A、C 重合)是抛物线上的一点,点 M是 y 轴上一点,当厶BPM是等腰直角三角形时,求点 M的坐标.、如图,已知抛物线 yax? bx c (aH )7二 + +0顶点 D ,9(1
6、2).(1)求抛物线对应的函数关系式;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.a,在平面直角坐标系中,A , B ,8、如图(0 6)(40).()按要求画图:在图 a 中,以原点 O为位似中心,按比例尺,将 AAOB缩小,得到1 1:2DOC,使 AAOB 与 ADOC在原点 O的两侧;并写出点 A的对应点 D的坐扌 为,点 B的对应点 C 的坐标为;(2)已知某抛物线经过 B、C、D三点,求该抛物线的函数关系式,并画出大致图象;与 x 轴相交于点 A , 和点 B,与 y 轴相交于点 C,()求四边形 ACDB的面积;2(3
7、)连接 DB,若点 P在 CB,从点 C 向点 B 以每秒 1 个单位运动,点 Q在 BD上,从点 B 向点 D以每秒 1个单位运动,若 P、Q两点同时分别从点 C、点 B点出发,经过 t 秒, 当 t为何值时,ABPQ是等腰三角形?、(江苏扬州弘扬中学二模)如图所示,已知抛物线 y 1X2 x k 的图象与 y 轴相交于92013=;_ +点 B (0, 1),点 C (m, n)在该抛物线图象上,且以 BC为直径的。M恰好经过顶点 A.(1)求 k 的值;(2)求点 C 的坐标;(3)若点 P的纵坐标为 t,且点 P在该抛物线的对称轴 1 上运动,试探索:当 Si S0) 经过点A和x轴正
8、半轴上的 点 B, AO=BO=2,Z AOB= 120 .(1)求这条抛物线的表达式;(2 )连结 OM,求 Z AOM的大小;(3)如果点 C在 x轴上,且 ABC与 AOM相似,求点 C的坐标.(1 )点 B 的坐标为 点 C 的坐标为_(用含 b的代数式表示);(2 )请你探索在第一象限内是否存在点 P,使得四边形 PCOB的面积等于 2b,且 APBC是以点 P为 直角顶点的等腰直角三角形?如果存在,求出点 P的坐标;如果不存在,请说明理由;(3) 请你进一步探索在第一彖限内是否存在点 Q,使得QCO、 AQOA和 QAB中的任意两个三角 形均相似 (全11如图 1,已知抛物线 y1
9、L=X2_ (b+l)x+_ (b是实数且 b2)与 x轴的正半轴分别交于点A、444B (点 A位于点 B是左侧),与y轴的正半轴交于点 C.等可看作相似的特殊情况)?如果存在,求出点 Q的坐标;如果不存在,请说明理由.12如图 1,已知抛物线的方程Cl:y = _ (x+2)(xjn) (m0)与 x轴交于点 B、C,与 y轴交于m点 E,且点 B在点 C 的左侧.(1 )若抛物线 C1过点 M(2, 2),求实数 m 的值;(2 )在(1)的条件下,求厶 BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得 BH+ E H 最小,求出点 H的坐标;(4 )在第四象限内,
10、抛物线 C1上是否存在点 F,使得以点 B、C、F为顶点的三角形与 BCE相似? 若存在,求 m的值;若不存在,请说明理由.13 .如图 1,已知梯形 OABC,抛物线分别过点 0(0, 0)、A ( 2, 0)、B (6, 3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图 1中梯形 OABC的上下底边所在的直线 OA、CB 以相同的速度同时向上平移,分别交抛物线于 点 6、Ai、Ci、Bi ,得到如图 2的梯形 01A1B1C1 .设梯形 Oi A1B1C1的面积为 S, Ai、Bi的坐标分别 为(xi, yi)、(X2, y2)用含 S的代数式表示 X2 xi,并求岀当
11、 S=36时点 Ai的坐标;(3)在图 1 中,设点 D的坐标为(1, 3),动点 P从点 B岀发,以每秒 1个单位长度的速度沿着线段 BC运动,动点 Q从点 D出发,以与点 P相同的速度沿着线段 DM运动.P、Q两点同时出发,当点 Q到 达点 M时,P、Q两点同时停止运动.设 P、Q两点的运动时间为 t,是否存在某一时刻 t,使得直线 PQ、直线 AB、x轴围成的三角形与直线 PQ、直线 AB、抛物线的对称轴围成的三角形相似?若存在,请求出 的值;若不存在,请说明理由.14.如图 1,抛物线经过点 A(4 , 0)、B (1, 0)、C (0, 一 2)三点.(1 )求此抛物线的解析式;(2 ) P是抛物线上的一个动点,过 P作 PM丄 x 轴,垂足为 M,是否存在点 P,使得以 A、P、M为顶点的三角形与 OAC相似?若存在,请求出符合条件的点 P的坐标;若不存在,请说明理由;(3 )在直线 AC上方的抛物线是有一点 D,使得 ADCA的而积最大,求出点 D的坐标.UfflW线 5与工轴的交点为M.N.直线y壮+ b与工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024家具销售合同样本
- 景观工程合同的履行期限
- 工程总价固定合同格式
- 2024年购销合同大米
- 房地产分销代理合同
- 2024个人与公司合作协议书
- 工程维护居间合同格式
- 2024年婚前财产协议书示例
- 城市房屋拆迁流程指南
- 合作经营协议书范本经典案例
- TMF自智网络白皮书4.0
- 电视剧《国家孩子》观影分享会PPT三千孤儿入内蒙一段流淌着民族大爱的共和国往事PPT课件(带内容)
- 所水力除焦设备介绍
- 农村黑臭水体整治项目可行性研究报告
- 改革开放英语介绍-课件
- pet考试历届真题和答案
- 《企业员工薪酬激励问题研究10000字(论文)》
- 大学英语三级B真题2023年06月
- GB/T 7909-2017造纸木片
- GB/T 25217.6-2019冲击地压测定、监测与防治方法第6部分:钻屑监测方法
- 中医学课件 治则与治法
评论
0/150
提交评论